Nabi, M.,
Senyurek, V., Lei, F., Kurum, M., & Gurbuz, A. (2023). Quasi-Global Assessment of Deep Learning-Based CYGNSS Soil Moisture Retrieval.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE.
16, 5629-5644.
DOI:10.1109/JSTARS.2023.3287591. [
Abstract] [
Document Site]
Kurum, M., Farhad, M.,
Senyurek, V., & Gurbuz, A. (2023). Enabling Subfield Scale Soil Moisture Mapping in near Real-time by Recycling L-band GNSS Signals from Drones.
EGU General Assembly 2023. EGU23-10991.
DOI:10.5194/egusphere-egu23-10991. [
Document Site]
Senyurek, V., Farhad, M. M., Gurbuz, A., Kurum, M., & Adeli, A. (2022). Fusion of Reflected GPS Signals With Multispectral Imagery to Estimate Soil Moisture at Subfield Scale From Small UAS Platforms.
Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE.
15, 6843-6855.
DOI:10.1109/JSTARS.2022.3197794. [
Abstract] [
Document Site]
Nabi, M.,
Senyurek, V., Gurbuz, A., & Kurum, M. (2022). Deep Learning-Based Soil Moisture Retrieval in CONUS Using CYGNSS Delay-Doppler Maps.
Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE.
15, 6876-6881.
DOI:10.1109/JSTARS.2022.3196658. [
Abstract] [
Document Site]
Lei, F.,
Senyurek, V., Kurum, M., Gurbuz, A., Boyd, D.,
Moorhead, R. J., & Crow, W. T. (2022). Quasi-global Machine Learning-based Soil Moisture Estimates at High Spatio-temporal Scales Using CYGNSS and SMAP Observations.
Remote Sensing of Environment. Elsevier.
276, 113041.
DOI:10.1016/j.rse.2022.113041. [
Abstract] [
Document Site]