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Bayesian Methods for Hierarchical Distance
Sampling Models

C.S. OEDEKOVEN, S.T. BUCKLAND, M.L. MACKENZIE, R. KING,
K.O. EVANS, and L.W. BURGER Jr.

The few distance sampling studies that use Bayesian methods typically consider
only line transect sampling with a half-normal detection function. We present a
Bayesian approach to analyse distance sampling data applicable to line and point tran-
sects, exact and interval distance data and any detection function possibly including
covariates affecting detection probabilities. We use an integrated likelihood which com-
bines the detection and density models. For the latter, densities are related to covariates
in a log-linear mixed effect Poisson model which accommodates correlated counts. We
use a Metropolis-Hastings algorithm for updating parameters and a reversible jump al-
gorithm to include model selection for both the detection function and density models.
The approach is applied to a large-scale experimental design study of northern bob-
white coveys where the interest was to assess the effect of establishing herbaceous
buffers around agricultural fields in several states in the US on bird densities. Results
were compared with those from an existing maximum likelihood approach that analyses
the detection and density models in two stages. Both methods revealed an increase of
covey densities on buffered fields. Our approach gave estimates with higher precision
even though it does not condition on a known detection function for the density model.

Key Words: Designed experiments; Hazard-rate detection function; Heterogene-
ity in detection probabilities; Metropolis–Hastings update; Point transect sampling;
RJMCMC.

1. INTRODUCTION

Bayesian methods are becoming increasingly popular for modelling wildlife popula-
tions and abundances (e.g. Buckland, Goudie, and Borchers 2000, Marcot et al. 2001;
Durban and Elston 2005; Schmidt et al. 2009; King et al. 2010). However, few distance
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sampling studies have taken a Bayesian approach. Karunamuni and Quinn (1995) devel-
oped a Bayes estimator for f (0) using a half-normal detection function (and a gamma
prior), where f (0) is a quantity estimated from the distance data that allows observed
counts to be adjusted for imperfect detection. The approach makes use of the conjugate
property between the normal and gamma distributions. Other studies have built upon this
approach. Eguchi and Gerrodette (2009) extended this model by including a binomial like-
lihood for the encounter rate along the line and described a joint posterior distribution for
the density model and effective strip width. Gimenez et al. (2009) implemented an estima-
tor for f (0) using BUGS software, while Zhang (2011) developed an empirical Bayes esti-
mator for f (0). These studies follow a similar approach in that they present their methods
for line-transect data and use the half-normal detection function. We describe a Bayesian
approach to density estimation from distance sampling data for both line and point transect
data applicable to any detection function that uses a hierarchical modelling approach.

Hierarchical distance sampling models have also been developed by e.g. Royle and Do-
razio (2008, Chapter 7.1). These authors employ a likelihood that combines the detection
function and the binomial model using the marginal probability of encounter (estimated
from the detection function) and a data augmentation approach for unobserved groups.
The data augmentation approach was adopted by Schmidt et al. (2012), who added a group
size model, and Conn, Laake, and Johnson (2012), who extended the approach for double
observer data.

In contrast, we use an integrated likelihood that combines the likelihood components of
the detection and count models. For the latter, we use a Poisson likelihood for the distance
sampling counts that incorporates a component corresponding to the detection function,
thus allowing for undetected animals on the surveyed strip (line transects) or circular plot
(point transects). In comparison to Eguchi and Gerrodette (2009), who use a binomial
likelihood to scale up from density at the line to density in the study area, our Poisson
model relates animal counts to covariates via a log-link function. This approach does not
rely on random placement of samplers in the study area to the same extent as the design-
based approach for the binomial model (Hedley and Buckland 2004). Similar to Chelgren
et al. (2011), we include a random effect for site in the Poisson model to accommodate
correlated counts due to e.g. repeat counts at the same site. The parameter space is explored
using a Metropolis–Hastings (MH) updating algorithm so that different prior distributions
for the parameters are easily implemented, and a reversible jump Markov chain Monte
Carlo (RJMCMC) algorithm allows for model uncertainty to be incorporated. This may
include different key functions for the detection function model and different covariate
combinations for both the detection function and the count models.

These developments were motivated by a large-scale experimental study to assess the ef-
fects of establishing conservation buffers along field margins on density of several species
of conservation interest such as the northern bobwhite (Colinus virginianus). Pairs of points
were set up at the edge of fields in farmland in 13 states in the USA. These pairs of points
consisted of one point on a buffered treatment field and one on a nearby non-buffered con-
trol field and will be referred to as sites in the following. Point transect surveys of coveys
(fall–winter stable social units of 10–15 individual birds) were conducted at least once but
up to three times per year in autumn from 2006 to 2008.
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In the following we begin by developing the integrated likelihood (Section 2), describe
the Bayesian approach (Section 3) and analyse bobwhite covey data using our Bayesian
approach (and a maximum likelihood approach for comparison) (Section 4). Lastly, we
contrast our Bayesian approach with existing studies using distance sampling likelihoods
(Section 5).

2. AN INTEGRATED LIKELIHOOD FOR DISTANCE SAMPLING
DATA

To obtain abundance estimates of a population of interest using distance sampling meth-
ods, lines or points may be placed in the study area according to some design (see Buckland
et al. 2001, for details). Each line or point is surveyed at least once following the distance
sampling protocol where the observer travels along the line (line transects) or remains at
the point for a fixed amount of time (point transects). Detections are recorded along with
the perpendicular distance from the line to the detection or radial distance from the point
to the detection. These distances may be recorded exactly or in predetermined distance in-
tervals. Thus, surveys of this type produce two types of data: firstly, the observed distances
ye with e = 1,2,3, . . . , n (n being the total number of detections) or observed distances
ni in each of i = 1,2,3, . . . , I distance intervals (where

∑I
i=1 ni = n); secondly, the ob-

served number of detections or counts np at line or point p along with the effort data,
which at bare minimum consists of the size of the search area. In case detections are made
of single animals, the observed counts at the line (point) are equivalent to the number of
detections at the line (point). These two types of data, distances and counts, give rise to
the two components of the integrated likelihood described in this section. However, if de-
tections are made of groups of animals (rather than single individuals), a third type of data
generated from a distance sampling survey is cluster size se , which represents the number
of individuals within the eth detected group. For simplicity, we ignore cluster sizes for
this study. Methods could, however, be extended to accommodate group sizes larger than
one. This may be done by considering counts of individuals (rather than detections) in the
count model described below or by including a model for cluster sizes. The latter may
be desirable e.g. if group size data are overdispersed (e.g. Cañadas and Hammond 2006;
Schmidt et al. 2012).

In contrast to many existing covariate models for distance sampling data (e.g. Hedley
and Buckland 2004; Buckland et al. 2009), the proposed integrated likelihood deals with
both components of the data simultaneously—similar to e.g. Royle, Dawson, and Bates
(2004) and Sillett et al. (2012). It consists of the likelihood components for the detection
function, which is denoted by Ly(θ) for exact distance data (see Equation (2.5) below for
interval data), and the Poisson likelihood for observed counts, Ln(β|θ). We use θ and β to
summarise the detection function and Poisson model parameters, respectively. These are
defined in more detail below. The integrated likelihood is the product of the two compo-
nents:

Ln,y(β, θ) = Ly(θ)Ln(β|θ) (2.1)
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(modified from Buckland et al. 2004, Chapter 2). We consider each individual likelihood

component in Ln,y(β, θ) and begin with Ly(θ).

2.1. LIKELIHOOD COMPONENT FOR THE DETECTION FUNCTION

Let f (y|θ) denote the probability density function of observed distances which is given

as

f (y|θ) = π(y)g(y|θ)
∫ w

0 π(y)g(y|θ) dy
, (2.2)

where y is the observed distance from the line (point), and w is the truncation dis-

tance (i.e. the furthest distance from the line (point) included in the analysis, Thomas

et al. 2010). π(y) describes the expected distribution of animals with respect to the line

(π(y) = 1/w) or point (π(y) = 2y/w2). The detection function g(y|θ) may be mod-

elled e.g. as half-normal (g(y|θ) = exp(−y2/2σ 2), with θ = {σ }) or hazard-rate (g(y|θ) =
1 − exp(−(y/σ )−τ ), with θ = {σ, τ }). The likelihood component, which is conditional on

the number of detections n, may be expressed as

Ly(θ) =
n∏

e=1

f (ye|θ), (2.3)

where ye refers to the eth detection (Buckland et al. 2004).

When detections are recorded in distance intervals, let fi denote the probability that a

detected animal is in the ith interval that is delineated by the cutpoints ci−1 and ci :

fi(θ) =
∫ ci

ci−1
f (y|θ) dy

∫ w

0 f (y|θ) dy
, (2.4)

where the truncation distance, w, corresponds to the outermost cutpoint. Then, the multi-

nomial likelihood LyG replaces Ly in Equation (2.1) and may be expressed as

LyG(θ) =
(

n!
∏I

i=1 ni !
) I∏

i=1

fi(θ)ni , (2.5)

where ni is the number of detected animals in the ith interval.

Note that in Equations (2.3) and (2.5), detections from all sites are pooled in one

detection function. For modelling heterogeneity using multiple covariate distance sam-

pling (MCDS) methods, the scale parameter σ of the half-normal or hazard-rate detec-

tion function is modelled as a function of covariates (σ (z) = δ0 × exp(
∑Q

q=1 zqδq), where

δq , q = 0,1,2, . . . ,Q replace σ in θ ) (Marques and Buckland 2003), and the zq represent

the values of the qth covariate.
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2.2. LIKELIHOOD COMPONENT FOR THE COUNT MODEL

For the log-linear Poisson model, Ln(β|θ), we begin by considering a study design that

consists of multiple sites each containing one or more lines (points) that are surveyed at

least once. If all sites contain only one line (point) and surveys are not repeated, each count

may be considered independent under conditions described by Buckland et al. (2001).

However, if sites contain clusters of lines (points) and/or sites were surveyed more than

once, this assumption is violated. We deal with this by grouping counts from the same site

and fitting a random effect coefficient for each site in the following count model (see below

in this section).

Here, we consider counts njpr at visit r to line or point p at site j as a Poisson random

variable with E(njpr) = λjpr . To adjust counts for imperfect detection out to distance w,

f (y|θ) from Equation (2.2) is used to estimate the effective area ν(θ), which is defined

as the area beyond which as many animals are seen as are missed within (Buckland et al.

2001). Thus, the density Djpr may be expressed as

Djpr = λjpr/ν(θ). (2.6)

For line transects, ν(θ) = 2lp
∫ w

0 g(y|θ) dy, where lp is the length of the line surveyed; for

point transects, ν(θ) = 2π
∫ w

0 yg(y|θ) dy. These definitions for ν are given for the case

where all detections are pooled in a global detection function. When modelling hetero-

geneity, e.g. using MCDS methods, the effective area may vary between lines (points), and

the global ν becomes νjpr .

However, when replacing Djpr with a covariate model (Djpr = exp(β0 + bj +
∑K

k=1 xkjprβk)) and rearranging Equation (2.6), we obtain a model for the expected counts

λjpr , which is now a function of the density model parameters β and conditional on detec-

tion function parameters θ :

λjpr(β|θ) = exp

(

β0 + bj +
K∑

k=1

xkjprβk + ln
(
ν(θ)

)
)

. (2.7)

Here β0 is the intercept, bj the random effect for site j (bj ∼ N(0, σ 2
b )), xk the k co-

variates, xkjpr the covariate values measured during visit r to that line or point, and βk the

associated coefficients. The vector β = {β0, β1, β2, . . . , βK,σb} denotes the parameters as-

sociated with the covariates affecting densities and the random effect standard deviation.

Equation (2.7) is given for the general case where lines or points that may produce corre-

lated counts, due to closeness in space and/or due to repeated measurements at the same

line (point), are grouped together as site j. The inclusion of a random effect for site ac-

commodates covariances for these measurements. However, in cases where lines (points)

follow a random survey design (Buckland et al. 2001) and each line (point) is surveyed

only once, the random effect term may be omitted.
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Using this model for λjpr , the likelihood for the count model (Equation (2.7)), condi-
tional on detection function parameters θ , may be expressed as

Ln(β|θ) =
J∏

j=1

∫ ∞

−∞

( Pj∏

p=1

Rj∏

r=1

(λjpr )
njpr exp(−λjpr)

njpr ! × 1
√

2πσ 2
b

exp

(

− 1

2σ 2
b

b2
j

))

dbj ,

(2.8)
where J refers to the total number of sites, and Pj and Rj refer to the total number of
lines (points) at and visits to the j th site, respectively. Ln(β|θ) forms the second likeli-
hood component in Equation (2.1). Note that in a maximum likelihood context the like-
lihood function including a random effect (for which normality is assumed) is generally
formulated with an integral as shown in Equation (2.8) as the random effect is integrated
out analytically (or by approximation) and the individual coefficients bj are not estimated
(e.g. McCulloch and Searle 2001). In the Bayesian context, the random effect is not in-
tegrated out analytically. Here, we use a data augmentation scheme where the individual
coefficients bj are included as parameters (or auxiliary variables) within the model and
updated within the MCMC algorithm (see below).

3. THE BAYESIAN APPROACH

3.1. HIERARCHICAL MODELS

Using a Bayesian approach, random-effects models can be implemented using hierar-
chical models where the standard deviation of the random effect (σb from Equation (2.8))
is considered a random variable with a distribution rather than as a fixed value (Davison
2003). Individual random effects coefficients (bj from Equations (2.7) and (2.8)) are fitted
in the model and updated at each iteration of the chain in a Markov chain Monte Carlo
(MCMC) algorithm.

Prior beliefs regarding the parameters, such as knowledge obtained from a previous
study, may be included in the current study via the prior distribution. This may allow infer-
ence on model parameters in cases where too few data exist in the current study to obtain
maximum likelihood estimates with great precision (e.g. Eguchi and Gerrodette 2009).

3.2. MCMC ALGORITHM

An MCMC algorithm is used to explore the posterior distribution of the parameters
given the data. Commonly used MCMC methods are the Gibbs sampler and Metropolis–
Hastings (MH) update. We focus on the MH update (Hastings 1970; Metropolis et al. 1953)
as some of the likelihood functions that may be used to form the posterior conditional dis-
tributions of parameters are non-standard (e.g. half-normal or hazard-rate detection func-
tion that may include a covariate model for the scale parameter). In particular, we use
a random walk single-update MH algorithm with normal proposal density. The proposal
variance for each parameter may be obtained via pilot-tuning (Gelman, Roberts, and Gilks
1996). See Appendix A.1 for details on the MH algorithm.
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3.3. MODEL SELECTION: REVERSIBLE JUMP MCMC

To discriminate between competing models, we treat the model itself as a parameter
and form the joint posterior distribution over both parameters and models. To explore this
posterior distribution we implement an RJMCMC algorithm (Green 1995) where each iter-
ation involves two steps; step 1: update parameters given the current model using the MH
algorithm (within model move) as described above in Section 3.2; step 2: update the model
using an RJ algorithm (between model move). Posterior model probabilities are estimated
as the proportion of time the chain spent in a particular model after the burn-in.

For the RJ step, two main strategies may be followed. In cases where models differ only
in the combination of the same set of covariates, a single RJ step may involve going through
each covariate and proposing to delete or add it depending on whether it is in the current
model or not. This involves generating a value for the new parameter from a proposal
distribution (if we propose to add it) or setting it to zero (if we propose to delete it) and
calculating the acceptance probability each time we propose to add or delete a parameter.

In those cases where all parameters of the newly proposed model change, one RJ step
involves generating new values for all parameters of the new model and accepting or re-
jecting the new model based on the above acceptance probability. A proposed move from a
half-normal detection function model to a hazard-rate model represents a simple example
for this scenario. For further details of the RJMCMC algorithm, see Appendix A.2.

4. CASE STUDY

4.1. THE DATA

As part of a study to assess the potential benefits of herbaceous buffers around agri-
cultural fields, Mississippi State University, Department of Wildlife, Fisheries, and Aqua-
culture set up a monitoring program using point transects in a number of Midwestern and
Southeastern states in the US (Evans et al. 2013). Survey points located at the edge of
the field were paired up: one point on a buffered treatment field and the other on a non-
buffered control field of the same agricultural use and within 1–3 km of the treatment point.
Each pair of points will be referred to as a site in the following. Repeat visits were made
to each point during fall of three survey years (2006–2008), and each detected northern
bobwhite covey was recorded along with their estimated radial distance to the point. To fa-
cilitate unbiased distance estimation, observers used satellite images of the point location
and surroundings to mark each detected covey. As no estimates of covey cluster sizes were
obtained, we model cluster densities (rather than densities of individuals).

Only those 11 among the 13 original states in our study were included in the anal-
ysis that contained more than 50 detections of coveys: Georgia, Iowa, Illinois, Indiana,
Kentucky, Missouri, Mississippi, North Carolina, South Carolina, Tennessee and Texas.
Within these states, 447 sites were visited 1–3 times in each survey year. The number of
sites per state ranged from 30 to 61. After defining a truncation distance of 500 m follow-
ing recommendations of Buckland et al. (2001), the analysed data included a total of 2545
detections with associated distances that were observed during 2534 counts (number of
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Table 1. Lower and upper bounds for uniform prior distributions for all model parameters. The different states
included GA, IA, IL, IN, KY, MO, MS, NC, SC, TN and TX.

Parameters Lower Upper

Detection Model
Scale Intercept: 1 100000
Shape: 1 20
Year levels: 2006, 2007 −3 3
Type level: Control −2.5 2.5
State levels: GA:TN −2.5 2.5

Count Model
Intercept: −20 −7
Year levels: 2007, 2008 −1 1
Type level: Treatment 0 1
Julian Day: −0.1 0.1
State level: IA:TX −3 3
Random effect standard deviation 0 2

counts by state: GA 190, IA 221, IL 162, IN 217, KY 218, MO 352, MS 236, NC 244, SC
250, TN 219, TX 225).

4.2. THE BAYESIAN APPROACH

We used Equations (2.3) and (2.8) to form the integrated likelihood function as shown
in (2.1). Potential covariates included in the models for Ly(θ) and Ln(β|θ) were the factor
covariates year (three levels: 2006, 2007, 2008), type (two levels: Control or Treatment
plot), state (11 levels) and the numeric covariate Julian day, which was centred around its
mean before the analyses (for the Ln(β|θ) model only as it did not reveal any influence on
detection probabilities during preliminary analyses using Distance software, Thomas et al.
2010). See Evans et al. (2013) for ecological details on modelling data from this study.
Hence, eight different covariate combinations were possible for the detection function,
while 16 were possible for the density model.

We assume that counts from the different points of the same sites were (positively)
correlated in the same manner as repeat counts of the same point. Hence, we included one
random effect coefficient per site in the model (as described in Section 2.2) where the same
coefficient applied to all repeat counts at either of the two points belonging to the same site.

Uniform priors were placed on all parameters θ and β for which bounds were chosen in
preliminary analyses (Table 1). Generally, this involved adding/subtracting two times the
standard errors from the maximum likelihood estimate of the full model; however, bounds
were extended if a parameter value reached either of these. If the parameter had natural
bounds, e.g. zero for the lower bound of the random effect standard deviation, these were
adopted.

To make summary statistics of parameters directly comparable to the maximum likeli-
hood approach (see Section 4.3), the last covariate levels (in numerical or alphabetic order)
of detection function parameters were absorbed in the intercept to follow the parameter-
isation of factor levels in Distance software. Likewise, the first levels were absorbed in
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the intercept for the count model to follow parameterisation of factor levels in the glmer
function from the lme4 package in R.

Preliminary investigation of the distance data indicated that the hazard-rate detection
function provided a much better fit than the half-normal. Hence, we included eight different
hazard-rate models as choices for the probability density function of observed distances
f (y|θ) in Ly(θ): one global (with no covariates) and seven multiple covariate models.
For the global model, only the scale and the shape parameters required estimation (see
Section 2 for details). The multiple covariate models contained additional parameters as
the scale parameter was modelled as a function of one, two or three of the covariates.

For Ln(β|θ), λjpr from Equation (2.7) was modelled including a intercept and com-
binations of the four covariates as well as a random effect for site. In preliminary analy-
ses, we investigated whether the count data were overdispersed. We fitted a glmm with a
quasipoisson distribution using the full models for both detection and counts to calculate
the offset. A quasi-Poisson glmm can be fitted using the gamm function of the mgcv pack-
age. The estimate of the dispersion parameter was 1.10. Hence, we assumed that Poisson
was appropriate to use.

The chain was started without any covariates for the detection and count models. Dur-
ing a single RJ step of each iteration, each of the covariates was proposed to be added or
deleted depending on whether it was in the current model or not. The values u for the new
parameters contained in the new model were drawn from parameter-specific proposal dis-
tributions shown in Table 2. These were initially defined as normal distributions with mean
and standard deviation equal to the maximum likelihood estimates and standard errors from
the full models; however, we adjusted means (by averaging estimates across different mod-
els for the respective parameters) and standard deviations during pilot-tuning to improve
model mixing.

To move from e.g. a global hazard-rate model to a model including a covariate, the
global scale parameter σ was converted into δ0 × exp(z1δ1) with σ = δ0 and u = δ1, where
δ1 is the coefficient associated with covariate z1. The bijective function in this case (as
well as in all the other possible model moves) was the identity function similar to the
example shown in Appendix A.2. Therefore, the Jacobian |J | (from Equation (A.4) in Ap-
pendix A.2) equalled one. We assume that all models were equally likely a priori, hence the
probability of moving to model m conditional on the chain being in model m′, P(m|m′),
was equal to P(m′|m) and vice versa for all possible model moves and cancelled when
calculating the acceptance probability (see Equation (A.4)).

Proposal distributions for the MH step were normal where the mean was the current
value of the parameter and the standard deviation was parameter-specific. The RJ and MH
step together completed one iteration. A total of 100,000 iterations were carried out where
the first 10,000 were considered the burn-in period and ignored when obtaining model
probabilities and summary statistics for parameters. Visual inspection of raw trace plots
from different starting points for parameters suggested that convergence had been achieved
within 10,000 iterations.

We conducted a prior sensitivity analysis where the uniform priors were replaced with
normal priors for all parameters. We also tested the robustness of our estimated model
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Table 2. Mean and standard deviation (SD) of Normal proposal distributions for parameters proposed to be
added or deleted during the RJ step of the RJMCMC algorithm. All parameters were categorical, except
for continuous Julian day.

Parameters Mean SD

Detection Model
Year level 2006 0.11 0.10
Year level 2007 −0.15 0.10
Type level: Control 0.50 0.10
State level: GA 0.42 0.10
State level: IA 0.21 0.10
State level: IL 0.70 0.10
State level: IN 0.67 0.10
State level: KY 0.64 0.10
State level: MO 0.69 0.10
State level: MS 0.61 0.10
State level: NC 0.66 0.10
State level: SC 0.03 0.10
State level: TN 0.47 0.10

Count Model
Year level: 2007 0.16 0.05
Year level: 2008 0.08 0.05
Type level: Treatment 0.42 0.10
Julian Day: −0.01 0.01
State level: IA 0.71 0.24
State level: IL −0.49 0.24
State level: IN −1.16 0.23
State level: KY −0.41 0.22
State level: MO 0.01 0.20
State level: MS −0.38 0.22
State level: NC −1.36 0.23
State level: SC 0.07 0.22
State level: TN −1.05 0.23
State level: TX 1.77 0.21

probabilities by starting the RJMCMC algorithm from the full detection and count models
(as opposed to the intercept only models). Both analyses revealed nearly identical results
as those presented in Section 4.4. Hence, we were confident that our results had converged.

4.3. THE CLASSICAL APPROACH

To compare the Bayesian approach with the classical, the data were analysed using
the two-stage approach (Buckland et al. 2009), extended to include a random effect for
site in the count model (Oedekoven et al. 2013). The first step included fitting a detection
function to observed distances by maximising the likelihood in Equation (2.3). The same
eight hazard-rate models were explored as in the Bayesian approach, i.e. global and MCDS
models with combinations of the covariates state, type and year. The effective area νjpr

was estimated using the best model for f (y|θ).
In a second step, the effective area was incorporated into the count model for λjpr and

parameter estimates obtained using the glmer function of the lme4 package (Bates 2009b)
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Table 3. Models and their probabilities resulting from RJMCMC and bootstrap analyses. Each density model
included an intercept and a random effect for site in addition to shown covariates (JD = Julian day).
Model probabilities refer to the percentage the respective models were chosen during 90 000 iterations
(after 10 000 iterations of burn-in) for RJMCMC and during 999 bootstrap iterations.

Model RJMCMC Two-Stage

Detection Model
MCDS: Type <0.001 –
MCDS: State – 0.01
MCDS: Year + State – 0.16
MCDS: Type + State <0.001 0.02
MCDS: Year + Type + State 1.00 0.81
Count Model
Type + State – <0.005
Year + Type + State – 0.01
Type + JD + State 0.89 0.10
Year + Type + JD + State 0.11 0.89

in R. The likelihood for the glmer function is equivalent to Equation (2.8), except that the
random effect is integrated out using an approximation for the integral (Bates 2009a). The
same 16 models were explored as in the Bayesian approach, including a fixed intercept and
a random effect for site and combinations of the four covariates state, type, year and Julian
day.

Best fitting models for both steps were found by minimum AIC values. As the effective
area represents an estimate but is included in the model as if it was a known constant, non-
parametric bootstrapping was used to estimate uncertainty (bootstrap standard errors (BSE)
and 95 % confidence intervals) of parameter estimates. To implement a non-parametric
bootstrap routine with 999 repeats, an automatic model selection was set up in R that
included calls to the MCDS engine from the Distance software (Thomas et al. 2010) for
the first step. For each bootstrap iteration, sites were resampled with replacement until the
original number of sites was obtained (Buckland et al. 2009). To include model uncertainty
in inference, the strategy followed was to select best fitting models based on minimum AIC
values for each bootstrap iteration (Buckland, Burnham, and Augustin 1997).

4.4. RESULTS

In the following we refer to those models with highest probabilities as the preferred
models. For the Bayesian approach, the preferred detection function model included the
covariates year, type and state in the model for the scale parameter of the hazard-rate
key function (probability = 1.00 to two decimal places, Table 3). Two other models were
visited within the RJMCMC algorithm with probabilities of <0.001 that included two
(type and state) or one covariate only (type). The same model with all three covariates
was the preferred model for the two-stage approach having been selected by AIC in 81 %
of bootstrap resamples. Three other models were selected: one with covariates year and
state (16 %), one with type and state (2 %) and one with state alone (1 %).

For the count model, two models dominated the RJMCMC algorithm, the model with
covariates type, Julian day and state as the preferred model (0.89 probability) and the full
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model (year + type + Julian day + state, 0.11 probability, Table 3). For the bootstrap,
the latter was the preferred model, selected in 89 % of resamples, while the former was
the second most frequently chosen model (10 %). Two other models were chosen during
the bootstrap, the model including the covariates year, type and state (1 %) and the model
including covariates type and state (<1 %). Hence, the largest discrepancy in model prob-
abilities between the two analysis methods was with regard to covariate year for which
the total probabilities to be included in any model was 0.11 for the RJMCMC algorithm
and 0.90 for the bootstrap (Table 3). However, 95 % confidence intervals obtained from the
bootstrap overlapped zero for both year coefficients (Table 4), indicating that this covariate
might have less importance than suggested by model probabilities for the bootstrap.

For the parameters of the detection function model, the posterior means of the parame-
ters in the preferred model were in most cases similar to the maximum likelihood estimates
resulting from the two-stage analysis of the original data (Table 4). The intercept for the
scale parameter and the shape parameter were larger for the Bayesian approach, while
the coefficients for the scale parameter were on average smaller. Histograms of detections
by state and estimated expected probability density functions (pdf) of observed distances
from the Bayesian approach are shown in Fig. 1. States SC and TX had the lowest average
detection probabilities as indicated by the smallest coefficients for these states (Table 4).
For these states, the steep decline after peak values for the pdf indicated rapidly declining
detection probabilities beyond ∼100 m (Fig. 1).

Interestingly, measures of uncertainty were mostly smaller for the Bayesian approach
despite the fact that both stages from the two-stage approach were combined in one. The
posterior standard deviations were smaller than the bootstrap standard errors for all detec-
tion function parameters. The 95 % credible intervals were narrower than the 95 % con-
fidence intervals for all but four detection function parameters (state coefficients IN, MS,
NC and TN). Intervals from the two approaches overlapped in all cases for the detection
function parameters.

For the count model, means and intervals were again similar between the two ap-
proaches (Table 4). However, slight discrepancies in means for count model coefficients
existed, which might have been due to that the best model from the two-stage approach
contained the additional covariate year and/or to Monte Carlo error. Further reasons are
discussed in Section 5. Also, measures of uncertainty were again mostly smaller for the
Bayesian approach: standard deviations from the Bayesian approach were smaller for all
covariates in the count model compared to BSEs. The 95 % credible intervals were nar-
rower for all coefficients of the count model compared to the 95 % confidence intervals,
except for the covariate Julian day where they were equal. The 95 % credible and confi-
dence intervals overlapped for all count model parameters. The only covariate selected for
the preferred count model for the two-stage approach that was not also in the preferred
model for the Bayesian approach was year. The 95 % confidence intervals for both year
coefficients included zero, indicating that this covariate might have been negligible for the
count model.

The parameter of interest in these models was the coefficient for the level Treatment
of the type covariate in the count model. This was 0.62 (SD = 0.07) and 0.63 (BSE =
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Table 4. Mean, standard deviation (SD) and 95 % credible intervals (CRI) from the RJMCMC analysis along
with maximum likelihood estimates (MLE), bootstrap standard errors (BSE) and 95 % confidence
intervals (CI) using the two-stage approach for the models with the highest probabilities (see Table
3 for model probabilities). Units of measurements were metres for the detection function model and
square metres for the count model.

RJMCMC Two-Stage

Mean SD 95 % CRI MLE BSE 95 % CI

Detection Model
Scale Intercept 152.96 8.97 135.47, 170.12 138.59 16.13 112.26, 163.79
Shape 3.30 0.16 3.00, 3.63 3.01 0.27 2.68, 3.41
Scale: Year 2006 0.06 0.03 0.01, 0.12 0.10 0.06 −0.05, 0.14
Scale: Year 2007 −0.11 0.04 −0.19, −0.05 −0.15 0.05 −0.25, -0.1
Scale: Type Control 0.13 0.04 0.05, 0.20 0.15 0.05 0.05, 0.23
Scale: State GA 0.38 0.07 0.23, 0.52 0.42 0.17 0.05, 0.54
Scale: State IA 0.17 0.10 −0.01, 0.36 0.21 0.16 −0.12, 0.30
Scale: State IL 0.66 0.09 0.48, 0.85 0.70 0.17 0.35, 0.76
Scale: State IN 0.62 0.10 0.43, 0.81 0.66 0.14 0.34, 0.72
Scale: State KY 0.58 0.08 0.43, 0.74 0.64 0.12 0.35, 0.68
Scale: State MO 0.62 0.06 0.51, 0.73 0.69 0.09 0.46, 0.71
Scale: State MS 0.55 0.07 0.41, 0.70 0.61 0.10 0.37, 0.64
Scale: State NC 0.60 0.09 0.43, 0.79 0.66 0.12 0.35, 0.70
Scale: State SC 0.01 0.08 −0.14, 0.16 3E–5 0.14 −0.29, 0.12
Scale: State TN 0.44 0.10 0.25, 0.63 0.47 0.12 0.19, 0.54
Count Model: Random Effects
Standard deviation 0.82 0.05 0.73, 0.91 0.78 0.04 0.69, 0.81
Count Model: Coefficients
Intercept Density −13.10 0.18 −13.43, −12.73 −13.23 0.33 −13.91,−12.87
Year 2007 – – – 0.17 0.13 −0.16, 0.37
Year 2008 – – – 0.17 0.11 −0.12, 0.31
Type Treatment 0.62 0.07 0.48, 0.75 0.63 0.12 0.36, 0.71
Julian Day −0.01 2E–3 −0.02, −0.01 −0.01 3E–3 −0.02, −0.01
State IA −0.81 0.29 −1.38, −0.23 −0.74 0.44 −1.65, −0.24
State IL −0.59 0.27 −1.12, −0.06 −0.53 0.38 −1.25, −0.07
State IN −1.24 0.27 −1.79, −0.71 −1.18 0.41 −1.99, −0.70
State KY −0.47 0.25 −0.98, 0.03 −0.44 0.34 −1.07, −0.02
State MO 0.01 0.22 −0.44, 0.42 0.05 0.34 −0.63, 0.46
State MS −0.43 0.25 −0.92, 0.05 −0.37 0.34 −1.04, 0.05
State NC −1.39 0.26 −1.88, −0.87 −1.31 0.36 −1.99, −0.87
State SC 0.01 0.27 −0.53, 0.53 0.08 0.42 −0.76, 0.56
State TN −1.10 0.28 −1.65, −0.57 −1.03 0.38 −1.80, −0.60
State TX 1.74 0.18 1.33, 1.99 1.46 0.29 0.99, 1.81

0.12) for the Bayesian and the two-stage approach, respectively, indicating an increase
in covey densities on treatment plots by 85 % (E[exp(type coefficient)] = 1.85) or 88 %
(exp(0.63) = 1.88) by the respective methods.

As described above, the expected densities can be calculated using the values of the β

parameters from the count model. These values are obtained from the posterior distribu-
tion of these parameters for the Bayesian approach or maximum likelihood estimates for
the two-stage approach (see above Equations (2.6) and (2.7) for details). For calculating
baseline estimates of the expected covey densities for the RJMCMC algorithm and two-
stage approach, we used those iterations from the respective methods where the preferred
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Figure 1. Estimated probability density functions, f (y) (y-axis), using mean parameter values from the
Bayesian approach (Table 4) against radial distance from the point (x-axis, in metres), and histograms of de-
tections for each of 11 states (GA, IA, IL, IN, KY, MO, MS, NC, SC, TN, TX); here, n represents the number of
detections for the respective states. For each state, f (y) was averaged over all levels of covariates year and type.

count model was chosen, excluding the burn-in iterations for the RJMCMC. Using Equa-
tion (2.7), we set the covariates to those levels that were absorbed by the intercept of the
density model, i.e. year = 2006, type = Control, Julian day = 0 (which is equivalent to
its mean as we centred the data for this covariate) and state = GA and added a random
effect contribution (0.5 × σb

2 replaces bj from Equation (2.7) when calculating the aver-
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Figure 2. Estimated covey densities (coveys per km2) and 95 % CRIs for each of 11 states shown for unbuffered
control and buffered treatment fields.

age expected density across all sites). The estimated baseline expected density from the
RJMCMC algorithm was 2.91 coveys per km2 (SD = 0.55, 95 % CRI = (2.05, 4.14)). The
posterior distribution of the expected density was right-skewed with a mode of 2.60 coveys
per km2. The estimated expected density resulting from the two-stage approach was 2.44
coveys per km2 (BSE = 0.88, 95 % CI = (1.25, 4.66)). The estimated expected densities
for each state and type combination are shown in Fig. 2.

5. DISCUSSION

There are two main aspects in this paper that are innovative and deserve comparison to
existing methods. We present a novel approach for combining the likelihood functions for
analysing distance sampling data in Section 2, which is easily applicable to both interval
and exact distance data. We also present a Bayesian approach for analysing distance sam-
pling data of multiple types in a straightforward manner. Different detection functions (the
half-normal, hazard-rate or others) may easily be implemented. It may also be extended to
include adjustment terms (added to the half-normal or hazard-rate model, Buckland et al.
2001) or covariates in the shape parameter. We provide the R code as online supplementary
material, which is annotated for easy adaptation.

Bayesian methods have been used before for analysing line transect data with a global
half-normal detection function (e.g. Royle and Dorazio 2008, Chapter 7.1; Eguchi and
Gerrodette 2009; Gimenez et al. 2009; Zhang 2011), a half-normal with covariates (e.g.
Gerrodette and Eguchi 2011; Moore and Barlow 2011) or a hazard-rate with one covariate
(Schmidt et al. 2012). Our approach allows simultaneous exploration of model and pa-
rameter space including different detection functions and different covariate combinations
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for both the detection and count models via an RJMCMC algorithm. Conn, Laake, and
Johnson (2012) described an RJMCMC algorithm for distance sampling data. However,
in their case, the RJ step refers to adding/deleting unobserved animals as part of the data
augmentation and not to exploring different models for the detection function or counts.

The log-linear Poisson model for counts described in Section 2 does not depend on a
random survey design in contrast with the classical distance sampling approach and data
arising from surveys conducted from platforms of opportunity may be used (Hedley and
Buckland 2004). It allows identification of relationships between abundance or density and
parameters of interest, such as the type covariate in our case study, which may be of interest
for designed experiments and wildlife management studies (see also Gerrodette and Eguchi
2011). Similar to Hedley and Buckland (2004) and Buckland et al. (2009), our count model
may be extended to include smooth functions for continuous covariates, e.g. by fitting
polynomial splines using the B-spline basis, or the Poisson likelihood may be replaced
with a negative binomial likelihood if more appropriate, e.g. in case overdispersion in the
count data is present (e.g. Royle, Dawson, and Bates 2004, Sillett et al. 2012).

Our approach is similar to Hedley and Buckland (2004) in that we use the conditional
formulation of the probability density function of observed distances (Buckland et al. 2001)
and information on detection probabilities enters the count model via an offset; we model
counts as density × effective area. However, Hedley and Buckland (2004) or Buckland
et al. (2009) analyse their data in two stages. In their second stage count model, they
condition on the estimate of the effective area derived from the first stage detection model.
This requires conducting non-parametric bootstrapping so that uncertainty associated with
estimating the detection function (and the effective area) propagates into the second stage
count model. Our integrated likelihood approach estimates all parameters simultaneously,
allowing direct quantification of the precision of the parameters in the count model with
taking proper account of the estimation of detection function parameters.

Using the Poisson model with a random effect for estimating densities as defined in
Equation (2.7) also allows us to accommodate correlated measurements due to closeness
in space and/or time, as occurs e.g. when there are repeat counts at the same line (point).
This differs from the integrated likelihood described by Royle, Dawson, and Bates (2004).
These authors considered the true but unknown abundances at the site as a random effect
with a Poisson distribution (in their notation Ni ∼ Poisson(λi)) and integrate it out by sum-
mation. They derive a Poisson likelihood for the observed counts with expected value equal
to λiπk(θ), where πk(θ) is obtained using the unconditional probability density function
of observed distances and describes the probability that an animal occurs and is detected
in the kth distance interval. Hence, these authors model counts as abundance N × de-
tected proportion of N for each interval. Note that we use the term integrated likelihood
in the spirit of integrating the likelihood components pertaining to two different data types
(described in Section 2), while Royle, Dawson, and Bates (2004) use the same term in
the context of integrating out a nuisance parameter (although they combine the likelihood
components from two different data sources as well).

In contrast to Royle, Dawson, and Bates (2004), we model variations in observed counts
between the different sites (those variations not explained by any of the fixed effects in-
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cluded in the model) as a normally distributed random effect with mean zero, hence ac-
counting for correlations between measurements at the same sites. This represents an ex-
tension to Royle, Dawson, and Bates who include one count per site in the analysis. With
the inclusion of site random effects, our approach allows us to incorporate repeat counts
from the same sites in the analysis. Our approach assumes that all counts from the same
site are positively correlated and only requires estimation of one additional parameter, the
random effect standard deviation. Chelgren et al. (2011), on the other hand, extended the
approach of Royle, Dawson, and Bates (2004) by including a random effect for plot by
week in the abundance model which requires estimation of week-specific variance param-
eters. However, including random effects allows inference on the wider area that these sites
represent and to obtain unbiased estimates of coefficients retained in the count model. Bias
in coefficient estimates may occur for example if some sites with high bird densities were
visited more frequently than those with low densities, and this variation was not modelled
as a fixed or random effect.

The comparison of summary statistics for model parameters from the Bayesian ap-
proach with those from the two-stage approach revealed some differences in means and
point estimates (Table 4) which cannot be due to prior sensitivity as we used uniform pri-
ors on all parameters for the Bayesian approach. We assume that these differences may
have been due to the fact that—as opposed to the two-stage approach—the likelihoods
for both components of our model were combined for the integrated likelihood and influ-
ence each other. We argue, in concurrence with Johnson, Laake, and Ver Hoef (2010), that
simultaneous estimation of all parameters in one stage represents a more realistic model
without having to rely on the assumption of a true detection function model. Whether the
smaller uncertainty estimates from the Bayesian approach compared to the two-stage ap-
proach were specific to our case study or can be expected in general is beyond the scope of
this paper.

Our Bayesian approach provides improvements over previous approaches. Besides the
often stated benefits for Bayesian analyses, e.g. allowing for prior information to be in-
cluded, our Bayesian approach provided a particular benefit for using the integrated likeli-
hood defined in Section 2: it might be challenging in some cases, such as our case study, to
find the maximum likelihood estimates for all parameters in one step. The covey data in-
cluded a total of 2545 observed distances during 2534 counts, and the full model included
31 parameters with a random effect (447 sites). Using maximum likelihood methods, the
random effect coefficients are not estimated individually but are integrated out during the
optimisation of the likelihood. However, due to the integrated nature of the detection and
density models, functions such as glmer from the lme4 package in R may not be used as
these treat the offset as a constant. Using the hierarchical model set up for the Bayesian ap-
proach, the random effect coefficients are included in the model specification and updated
during each iteration. Due to this data augmentation method, no numerical integration is
necessary providing a straightforward technique to explore the parameter space.

Bayesian methods also offer efficient exploration of model space with the use of RJM-
CMC. By contrast, using a maximum likelihood approach, a model selection routine that
considered all possible model combinations for our case study would have required max-
imising Ly,n(β, θ) for 128 models (possible combinations of eight detection functions and
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16 count models). RJMCMC, on the other hand, allows incorporating model uncertainty
into a single chain.

APPENDIX

A.1 Metropolis–Hastings

We use a single-update random walk MH algorithm where we cycle through each parame-
ter in Ln,y(β, θ). To use a simple scenario, assume that β = {β0, σb}. Then, e.g. for param-
eter β0 with current value βt

0, we propose to move to a new state, β ′
0, with β ′

0 ∼ (βt
0, σ

2
β0

).
This newly proposed state is accepted as the new state with probability α(β ′

0|βt
0) given by

α
(
β ′

0

∣
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0

) = min
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. (A.1)

Here, q(β ′
0|βt

0) denotes the proposal density of β ′
0 given the current state is βt

0. We note
that the terms q(βt

0|β ′
0) and q(β ′

0|βt
0) cancel in the acceptance probability since we use a

symmetrical proposal distribution. The analogous MH updates are used for random effect
coefficients. Proposal variances are chosen via pilot-tuning.

A.2 Model Selection: Reversible Jump MCMC

The joint posterior distribution of models and parameters is given (up to proportionality)
by

πn,y(βm, θm,m) ∝ Ln,y(βm, θm,m)p(βm, θm|m)p(m), (A.2)

where Ln,y(βm, θm,m) denotes the probability density function of the data given current
parameter values βm and θm and model m, p(βm, θm|m) the prior distribution for model
parameters βm and θm, and p(m) the prior probability of model m. The RJMCMC algo-
rithm is used to explore the parameter and model space simultaneously (Green 1995).

Each iteration involves two steps: a within model move and a between model move.
During the within model move, the Metropolis–Hastings (MH) algorithm is used to update
the parameters given the model (as described above in Section 3.2). During the between
model move, the reversible jump (RJ) step, model m conditional on the current parameter
values is updated. This move involves a proposal to update the model itself; suppose the
chain is in model m and we propose to move to model m′. A bijective function describes the
relationship between the current and proposed parameters and is used to convert parameters
from model m to parameters for model m′. In a simple scenario, say, where model m

contains parameters β = {β0, β1} and model m′ contains parameters β ′ = {β ′
0, β

′
2}, the

bijective function might be expressed as an identity function:

β ′
0 = β0 u′ = β1 β ′

2 = u. (A.3)
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Here u and u′ are random samples from some proposal distributions for the respective
parameters. The acceptance probability may then be expressed as

A = πn,y(β
′,m′)P (m|m′)q ′(u′)

πn,y(β,m)P (m′|m)q(u)
|J |, (A.4)

where P(m′|m) denotes the probability of proposing to move to model m′ given that the
chain is in model m, q(u) and q ′(u′) are the proposal densities of u and u′, and |J | is the
Jacobian (which equals one if the bijective function is the identity function).
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