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Abstract—An embedded wavelet-based coder for the shape-
adaptive coding of ocean-temperature data is described. The
proposed coder, 3D binary set splitting with k-d trees (3D-
BISK), is based upon the popular bitplane-coding paradigm and
is specifically designed for shape-adaptive coding. Other similar
coding methods use octree-based set partitioning; however, 3D-
BISK employs a simpler set decomposition based on k-d trees
which makes it more flexible when considering shape-adaptive
coding. The performance of 3D-BISK is compared to prominent
shape-adaptive coders and superior performance is demonstrated
for a variety of ocean-temperature datasets.

I. INTRODUCTION

The compression of imagery with arbitrary shape has

become an important issue in several multimedia applica-

tion areas, with the recent MPEG-4 video-coding standard

[1] being the prime example. However, certain geoscience

applications have also benefited from such shape-adaptive

coding. For example, the US Naval Oceanographic Office

(NAVOCEANO) generates three-dimensional oceanographic

temperature datasets for rectangular regions of sea and land at

standard ocean depths. Points that refer to land or lie beyond

the bathymetry are considered to have no valid data. Thus, the

compression of such ocean-temperature data requires shape-

adaptive coding.

The problem of the shape-adaptive coding of ocean-

temperature imagery was considered in [2, 3], wherein the

modern paradigm of embedded wavelet-based coding—at the

time quickly becoming the preferred approach to the compres-

sion of 2D images—was adapted to 3D ocean-temperature

imagery with arbitrary shape. Since that time, a number

of 3D embedded wavelet-based techniques with improved

performance have been proposed, albeit in the context tra-

ditional, rectangular imagery. Yet, these coders all have a

common design built upon three major components—a 3D

wavelet transform, significance-map encoding, and successive-

approximation quantization (i.e., bitplane coding)—which can

be easily made shape adaptive.

A key process in embedded wavelet-based coders is the

mapping of the significance state of each wavelet coefficient

(i.e., whether or not the coefficient is greater than or less

than the current threshold) into a binary-valued significance

map with the threshold decreasing for each successive pass

through the dataset. Such coders can be made shape adaptive

and applied to the ocean-temperature compression problem by

employing a 3D shape-adaptive wavelet transform [4] which

transforms only the ocean regions; land regions, where no

data exists, are permanently considered insignificant in the

significance map. The major difference between wavelet-based

compression schemes lies in the method for coding the sig-

nificance map; consequently, the key to shape-adaptive coding

is to modify this significance-map encoding to accommodate

the presence of land regions wherein no valid data lies.

In this paper, we describe 3D binary set splitting with

k-d trees (3D-BISK), which is a 3D extension of the 2D-
BISK coder proposed in [5]. BISK is itself a variant of the

well-known, state-of-the-art set-partitioning embedded block

(SPECK) algorithm [6, 7]; its shape-adaptive version, object-

based SPECK (OB-SPECK) [8]; and its 3D extension, 3D-

SPECK [9]. Experimental evidence has shown that 3D-SPECK

demonstrates performance roughly equivalent to that of the

prominent JPEG-2000 standard [10] in tasks such as the

compression of hyperspectral image cubes. JPEG-2000, on the

other hand, does not support shape-adaptive coding.

The main contribution of this paper is the development

of the 3D-BISK algorithm which replaces the octree set-

partitioning operation of 3D-SPECK with k-d trees [11], a
simpler set decomposition particularly well-suited to shape-

adaptive coding due to its greater flexibility at capturing

arbitrarily shaped regions. Additionally, 3D-BISK aggressively

discards land regions from consideration by shrinking the de-

composed sets to the bounding box of their ocean regions. Em-

pirical results demonstrate that 3D-BISK consistently yields

rate-distortion performance significantly superior to that of a

number of other 3D shape-adaptive embedded coders for the

coding of a variety of ocean-temperature volumes.

The remainder of this paper is organized as follows. In

Sec. II, we briefly review a number of prior approaches

to shape-adaptive coding. Next, we describe the 3D-BISK

algorithm in detail in Sec. III and experimentally compare it to

other techniques in Sec. IV. Finally, we make some concluding

remarks in Sec. V. We note that a preliminary description of

3D-BISK appeared in [12]; here, we give a more thorough

presentation of the algorithm, as well as a more comprehensive

experimental investigation.

II. SHAPE-ADAPTIVE CODING

In this section, we review a number of prior approaches

to 3D shape-adaptive coding. Essentially, 3D shape-adaptive

coders are direct extensions to 3D of algorithms developed for
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2D imagery with arbitrary shape. Regardless of the dimen-

sionality of the data, the straightforward approach to shape-

adaptive coding involves applying a transform to only the

valid ocean data and treating the remaining land regions as

permanently “insignificant.” The bitplane-coding passes can

then process these land regions in the same way as other

insignificant coefficients. While most shape-adaptive coders

are based on this general idea, a number of approaches employ

various modifications to the significance-map encoding to

increase performance.

The transform used is a 3D version of the shape-adaptive

wavelet transform of [4]. There are two ways to extend a

2D shape-adaptive transform to 3D. The first is a so-called

wavelet-packet transform in which each ocean-depth layer is

decomposed using a separable 2D transform followed with a

1D decomposition in the depth direction. Alternatively, there

is the widely-used the dyadic transform structure in which the

lowpass baseband subband is recursively decomposed for each

transform scale. Unless otherwise noted, each of the following

shape-adaptive algorithms can use either the dyadic or wavelet-

packet transform structures.

A. Shape-Adaptive 3D-SPIHT

Set partitioning in hierarchical trees (SPIHT) [13] is one of

the most prominent embedded wavelet-based coders for 2D

images; it was extended to 3D in [14] and made shape adaptive

in [15]. Significance-map encoding for 3D-SPIHT involves

the coding of the insignificance of entire tree-structured sets

(zerotrees) across multiple scales of a wavelet transform. The

shape-adaptive version of 3D-SPIHT follows the straightfor-

ward approach described above by aggregating large land

regions together with insignificant ocean regions into zerotree

sets. Further refinement to the algorithm can be made by

discarding subtrees consisting entirely of land regions (which

are permanently insignificant) from further consideration [15].

B. 3D-OB-SPECK

The SPECK algorithm [6, 7] eliminates the cross-scale

aggregation of coefficients that occurs in SPIHT and other

zerotree-based algorithms and instead applies partitioning to

sets of contiguous coefficients within each individual subband.

SPECK was made shape adaptive as OB-SPECK in [8] and ex-

tended to 3D as 3D-SPECK [9]. To our knowledge, the first 3D

shape-adaptive version of SPECK (3D-OB-SPECK) appeared

as an implementation in QccPack [16]. In 3D-OB-SPECK, the

significance state of an entire set is tested and coded; then, if

the set contains at least one significant coefficient, it is split

into eight subsets (i.e., octree partitioning), and the process is

repeated recursively for each subset. 3D-OB-SPECK is similar

to shape-adaptive 3D-SPIHT in that land is considered to be

permanently insignificant, and, when a set contains only land

coefficients, it is removed from further consideration.

C. 3D-tarp

A unique approach to significance-map coding, tarp coding

[17], uses a nonadaptive arithmetic coder coupled with an

explicit probability estimate of the significance map. In the

tarp coder, the density estimation is efficiently computed by a

novel series of 1D filtering operations coined tarp filtering. In

contrast to other prominent wavelet-based coders, tarp coding

lacks complex context modeling or cross-subband, cross-scale

aggregation of symbols such as zerotree structures. Tarp,

originally developed for 2D rectangular images, was extended

to 3D imagery in [18, 19] and to shape-adaptive coding in

[20]. Shape-adaptive tarp coding calls for “skipping” over

land regions while maintaining the current probability estimate

unchanged. Because the tarp algorithm lacks context modeling

and symbol aggregation, this skipping of land leads to efficient

performance for shape-adaptive coding.

D. 3D-WDR

In embedded wavelet-based coding, the significance map

forms a binary image; consequently, techniques that have been

employed for the coding of bilevel images are applicable to

significance-map coding. For example, runlength coding has a

long history of such binary-coding use. The wavelet difference

reduction (WDR) [21] algorithm combines runlength coding

of the significance map with an efficient lossless represen-

tation of runlength symbols to produce an embedded image

coder. WDR was originally developed as a 2D coder, but

is straightforwardly extended to 3D, which was done as an

implementation in QccPack [16]. In addition, WDR can be

made shape adaptive by “skipping” over land regions and

not coding any significance information for them or including

them in the runlengths. We note that the algorithm described

in [2, 3], which is currently used by NAVOCEANO for the

coding of ocean-temperature imagery, is very similar to shape-

adaptive 3D-WDR.

E. EBCOT

The recent JPEG-2000 standard [10] is the most promi-

nent example of techniques that code the significance map

using known significance states of neighboring coefficients

to provide a context for the coding of the significance state

of the current coefficient with an adaptive arithmetic coder.

While the JPEG-2000 standard does not support arbitrarily

shaped images, the underlying embedded block coding with

optimized truncation (EBCOT) algorithm [22] is easily made

shape adaptive. In shape-adaptive EBCOT [23], land regions

are ignored and not coded in all coding passes, while any-

time that the context for an ocean coefficient overlaps the

bathymetry boundary, land coefficients in the context are

treated as insignificant.

The significance-map coding in EBCOT is strictly a 2D

process. That is, a 2D image is transformed with a 2D wavelet

transform, and each subband is partitioned into a number of

codeblocks, with an embedded bitstream generated indepen-

dently for each codeblock. EBCOT can be used for 3D datasets

by applying this 2D codeblock-based procedure to each 2D

“slice” of the 3D dataset, truncating each codeblock bitstream,

and then concatenating the truncated bitstreams together to

form the final bitstream. In the 3D-EBCOT coding of [15],
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a Lagrangian rate-distortion-optimal truncation procedure is

used as in the original 2D EBCOT formulation [22]. We note

that, due to the 2D nature of its codeblock processing, the

3D-EBCOT algorithm must use the wavelet-packet transform,

whereas the preceding techniques can use either the wavelet-

packet or dyadic decomposition structures.

III. 3D BINARY SET-SPLITTING WITH k-D TREES

In this section, we describe our 3D-BISK algorithm and

the k-d tree set-partitioning structure upon which it is based.
3D-BISK is a variant of 3D-OB-SPECK that is well-suited

to shape-adaptive coding. The octree-partitioning of 3D-OB-

SPECK is replaced by binary set splitting of k-d trees which
allows for a more flexible coding of arbitrarily shaped regions.

An additional key difference between 3D-OB-SPECK and 3D-

BISK is the aggressive “shrinking” of the sets to the bounding

box of the ocean coefficients contained in the set, which is

responsible for a large part of the performance gain.

A. Set Partitioning with k-d Trees

Octrees and k-d trees [11] are two well-known methods for
the partitioning of 3D sets. In an octree, a set (a rectangular

prism) is divided along all three dimensions to form eight

equally sized subsets. On the other hand, in a k-d tree, a set
is divided along a single dimension into two subsets whose

sizes are not necessarily equal. It is straightforward to see that

k-d trees can achieve a partitioning of a set identical to that
resulting from an octree decomposition, although usually a

greater number of levels of decomposition are needed. How-

ever, we demonstrate below that the k-d trees decomposition
is advantageous for shape-adaptive coding of the significance

map.

B. The 3D-BISK Algorithm

Following a 3D wavelet transform, the 3D-BISK algorithm

begins by placing the subbands of the transformed coefficients

into a list of insignificant sets (LIS); subsequently, each

subband is “shrunk” to the bounding volume of its ocean

coefficients. As in 3D-OB-SPECK, each LIS is indexed, and

a given set S resides in the LIS with index N(S), i.e.,
in LISN(S). The LIS index, N(S), is the total number of
decompositions, or splits, that has produced the set. The

algorithm continues in the usual bitplane-coding fashion with

sorting and refinement passes. The algorithm is as follows:

procedure BISK(X )
Initialization(X )
n← max bitplane
while (true)

SortingPass()

RefinementPass()

n← n− 1

procedure Initialization(X )
for each subband S in X

N(S)← total number of decompositions
in all dimensions

ShrinkSet(S)

append S to LISN(S)

LSP ← ∅

procedure SortingPass()

l = number of LIS lists
while l > 0
for each S ∈ LISN(S)

ProcessSet(S)
l← l − 1

procedure RefinementPass()

for each S ∈ LSP
output nth bitplane value of coefficient magnitude

Like 3D-OB-SPECK, 3D-BISK tests the significance of all the

sets in all the LIS lists. A set is considered to be significant

if the magnitude of the largest ocean coefficient exceeds a

threshold. If a set contains no significant ocean coefficients,

it is placed into an LIS and will be processed at the next

lower threshold. Since 3D-BISK employs k-d trees, when a
set becomes significant, it is split into halves. Each half is

then placed in an LIS and processed in the same manner until

decomposed to a single pixel. If a set being processed contains

no ocean coefficients, the set is removed from its LIS and

discarded. The algorithms for processing and partitioning the

sets is described below:

procedure ProcessSet(S)
if S = ∅
remove S from LISN(S)

else

output Γn(S)
if Γn(S) = 1
remove S from LISN(S)

if |S| = 1
output sign of S
append S to LSP

else

CodeSet(S)

procedure CodeSet(S)
{S1,S2} = PartitionSet(S)
if S1 6= ∅
append S1 to LISN(S1)

ProcessSet(S1)

append S2 to LISN(S2)

ProcessSet(S2)

procedure PartitionSet(S)
if z(S) ≥ y(S) ≥ x(S)
split S depth-wise into S1 and S2:

S1: ⌊z(S)/2⌋ × y(S)× x(S)
S2:

(

z(S)− ⌊z(S)/2⌋
)

× y(S)× x(S)
else

if x(S) ≥ y(S) > z(S)
split S horizontally into S1 and S2:

S1: z(S)× ⌊y(S)/2⌋ × x(S)
S2: z(S)×

(

y(S)− ⌊y(S)/2⌋
)

× x(S)
else

if y(S) > z(S) > x(S)
split S vertically into S1 and S2:
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S1: z(S)× y(S)× ⌊x(S)/2⌋
S2: z(S)× y(S)×

(

x(S)− ⌊x(S)/2⌋
)

N(S1) = N(S) + 1
N(S2) = N(S) + 1
ShrinkSet(S1)

ShrinkSet(S2)

Above, Γn(S) is the significance state of set S, and z(S),
y(S), and x(S) are the number of ocean depths, rows, and
columns, respectively, of set S.
The use of k-d trees in 3D-BISK is advantageous for

the adaptive arithmetic coder used to code the significance

information. Specifically, when set S is split into S1 and S2,

and S1 is known to be insignificant (or empty), the significance

state of S2 is guaranteed to be significant. In this case, the

significance state Γn(S2) is not coded into the bitstream. In
the other case, the coding of Γn(S2) is conditioned with
the knowledge that S1 is significant.

1 By contrast, the first

seven subsets of an octree decomposition must be known to

be insignificant for 3D-OB-SPECK to benefit from the same

strategy. The contexts used for set-significance coding within

the BISK algorithm are as follows:

c(S1)← CONTEXT S1

if S1 = ∅ or Γn(S1) = 0
c(S2)← CONTEXT NOCODE

else

c(S2)← CONTEXT S2

Above, c(Si) denotes the context that will be used to code
Γn(Si).
In PartitionSet() above, a set is split into roughly

equal-sized halves along the dimension of the set which is

the longest. We refer to this strategy for determining the

location and dimension of the k-d tree set-splitting operation
as “longest dimension” (LD). We have investigated several

alternative set-splitting approaches: 1) split a set into halves

along the dimension that results in the smallest-sized sets after

the set-shrinking operation (i.e., “smallest set” (SS)), 2) split

a set along its longest dimension at the “center of mass” of

its ocean points (i.e., “center of mass” (CM)), and 3) split a

set at the center of mass along the dimension and that results

in the smallest set sizes after the set-shrinking operation (i.e.,

“smallest set/center of mass” (SSCM)). In the experimental

results that follow in the next section, we empirically compare

the performance of these set-splitting strategies.

IV. EXPERIMENTAL RESULTS

The performance of our 3D-BISK algorithm is measured

using the ocean-temperature data from the study in [2, 3].

We use a three-level wavelet transform with the popular 9/7

biorthogonal filters [24], and find that the dyadic transform

structure significantly outperforms the corresponding wavelet-

packet transform. Consequently, all algorithms use this dyadic

transform, with the sole exception being 3D-EBCOT, which

cannot use the dyadic transform. All results for 3D-EBCOT

1Due to how sets are partitioned (see PartitionSet()), S2 is guaranteed
to be nonempty while S1 may or may not be empty.

are thus for the wavelet-packet transform. Throughout the

experiments, rate is measured in bits per voxel (bpv), and

distortion is measured as signal-to-noise ratio (SNR) in dB.

Table I compares the distortion performance at a given rate

for the four set-splitting strategies for 3D-BISK outlined in

Sec. III-B. We see that, although the performances for all four

approaches are rather similar, the LD strategy—which is the

simplest of the four to implement—performs nearly as well

as or better than all the other splitting policies. Consequently,

we use the LD splitting strategy exclusively throughout the

remainder of the results.

Fig. 1 presents the distortion obtained for two datasets

over a range of rates. We see that 3D-BISK outperforms

3D-EBCOT by a wide margin (3–10 dB); this performance

gap is due largely to the fact that 3D-EBCOT is constrained

to use the wavelet-packet decomposition structure. Distortion

performance for a given rate is tabulated in Table II for all the

algorithms which use the dyadic transform. We see that 3D-

BISK almost always yields the best distortion performance,

being outperformed by tarp for only one dataset.

V. CONCLUSIONS

In this paper, we described 3D-BISK, an embedded,

wavelet-based, 3D shape-adaptive coder for the compression

of ocean-temperature imagery. We compared 3D-BISK to a

variety of prominent 3D wavelet-based coding techniques, and

experimental results demonstrated superior performance for

3D-BISK for a variety of ocean-temperature datasets. The

performance gain was attributed to aggressive discarding of

land-only sets and the simpler, more flexible partitioning of

the sets that results from the binary k-d tree set-decomposition
structure.

Interestingly, k-d trees often require more decompositions
to represent a dataset than octrees. This suggests that binary

set splitting allows for a simpler, more efficient entropy coding

of the significance map. To confirm this hypothesis, we coded

full datasets with no land so that ShrinkSet() had no effect

on the coding process. In the case of coding these datasets,

3D-BISK and 3D-OB-SPECK exhibited virtually identical

performance despite that fact that 3D-BISK incurred roughly

seven times as many set-decomposition operations.
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TABLE I

COMPARISON OF 3D-BISK SET-SPLITTING STRATEGIES AT 1.0 BPV

SNR (dB)
Dataset LD CM SS SSCM
bisca 53.1 53.1 53.2 53.1
nwlan 58.7 58.6 58.7 58.5
okina 61.6 61.6 61.5 61.7
ylsoj 54.2 54.1 54.1 54.2
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Fig. 1. Rate-distortion performance for adrtc and bisca.

TABLE II

DISTORTION PERFORMANCE AT 1.0 BPV

SNR (dB)
Dataset BISK SPECK SPIHT TARP WDR
adrtc 45.2 44.7 40.1 44.1 44.7
bisca 53.1 52.7 51.6 52.8 51.8
ginse 48.1 47.8 46.7 48.1 47.3
guama 70.7 69.7 68.7 70.3 70.1
hawai 60.3 59.9 59.0 59.7 60.1

med 49.3 48.9 46.7 48.9 48.8
nwlan 58.7 58.4 57.4 58.3 57.4
okina 61.6 60.7 57.3 62.3 61.1
socal 45.3 44.7 38.4 44.2 44.5
ylsoj 54.2 53.9 52.7 54.0 53.3
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