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Abstract— Multihypothesis motion compensation has been
widely used in video coding with previous attention focused
on techniques employing predictions that are diverse spatially
or temporally. In this paper, the multihypothesis concept is
extended into the transform domain by using a redundant
wavelet transform to produce multiple predictions that are
diverse in transform phase. The corresponding multiple-phase
inverse transform implicitly combines the phase-diverse predic-
tions into a single spatial-domain prediction for motion compen-
sation. The performance advantage of this redundant-wavelet-
multihypothesis approach is investigated analytically, invoking
the fact that the multiple-phase inverse involves a projection
that significantly reduces the power of a dense-motion residual

be subpixel-accurate MC [2] and overlapped block motion
compensation (OBMC) [3,4]. Another approach is to deploy
MHMC in the temporal dimension by choosing predictions
3;[p, t] from multiple reference frames. Examples of this class
of MHMC are bidirectional prediction (B-frames) as used in
MPEG-2 and H.263 and long-term-memory motion compen-
sation (LTMMC) [5]. Of course, it is possible to combine
these two classes by choosing multiple predictions that are
diverse both spatially and temporally [6]. In [7], we intrazbd

a new class of MHMC by extending the multihypothesis-
prediction concept into the transform domain. Specifigally

modeled as additive noise. The analysis shows that redundant-we performed ME/MC in the domain of a redundant, or

wavelet multihypothesis is capable of up to a 7-dB reduction
in prediction-residual variance over an equivalent single-phase,
single-hypothesis approach. Experimental results substantiatine
performance advantage for a block-based implementation.

Index Terms— multihypothesis motion compensation, redun-
dant wavelet transform, phase-diversity multihypothesis

I. INTRODUCTION

overcomplete, wavelet transform and used multiple presfist
that were diverse in transform phase. We coined the term
redundant-wavelet multihypothesis (RWMH) to describe our
approach.

In this paper, we present a thorough investigation of the
performance advantage of RWMH over single-hypothesis
techniques that base ME/MC on merely a single phase, the
most prominent of these latter strategies being the system o

Multihypothesis motion compensation (MHMC) [1] formsPark and Kim [8]. The centerpiece of this investigation is

L. . . . T
a prediction of pixels[p, ¢] at spatial locationp = [z y]
in the current frame at time¢ as a combination of multiple

an analytical derivation that quantifies the gain of RWMH
over single-phase prediction under a model that partitions

predictions in an effort to combat the uncertainty inhereff2velet-domain motion into a global pan-motion transkatio

in the motion-estimation (ME) process. Assuming that t
combination of these hypothesis predictions is linear, aech
that the prediction of frame[p, ¢] is

where the multiple predictions;[p,t] are combined accord-
ing to some weightsv;[p,¢]. A number of multihypothesis

techniques for motion compensation (MC) have been propos
over the last decade. One approach to MHMC is to impleme

multihypothesis prediction in the spatial dimensions;, itee

predictionss;[p, t] are culled from spatially distinct locations
in the reference frame. Included in this class of MHMC woul
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Has well as a dense motion field. Our RWMH technique

substantially reduces the variance of the prediction tedid
due to the dense-motion component thanks to the robustness
of overcomplete transforms to additive noise in the tramafo
domain. This noise robustness leads to a theoretical rieduct
in the variance of the overall MC prediction residual by up
to 7 dB with respect to the single-phase system. A block-
based implementation, which approaches the analyticabmot
del as the block size decreases, exhibits similar vagianc
rﬁtduction in experimental results and achieves substantia
gains in actual coding performance over an equivalent singl
hypothesis system.

The remainder of the manuscript is organized as follows.

e start with Sec. Il which overviews theory behind the
redundant discrete wavelet transform (RDWT) [9-11] neces-
sary to understanding the analysis to follow. In Sec. lll, we
overview RDWT-based video coding including our RWMH
technique. In Sec. IV, we present the main contribution of
the paper, an analytical derivation of the gain of RWMH
over single-phase prediction. Afterward, we consider some
issues relevant to practical implementation of RWMH in a
block-based system in Sec. V. We follow with Sec. VI in
which we present experimental results. Finally, we makeesom
concluding remarks in Sec. VII.
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Il. THE REDUNDANT WAVELET TRANSFORM whereD~1(.) is the inverse DWT, and denotes subsampling

Let s[p,?] be a video sequence sampled spatially on df @ Single phase. Alternatively, one can employnaltiple-
integer-pixel lattice and temporally at integer times aedate Phase inversevhich we denote as

the 2D spatial RDWT of frames[p,t| at time ¢ as the . ) *)
collection of subband$® [p, 1], s'[p,t] =R [{S ’ [p’t]}k]' ®)
{S(k)[pi]}k = R{S[pﬂ] (2) In such a multiple-phase inverse, one independently isvert

7 o N )
In essence, the RDWT [9—11] removes the downsampling Og)ach of the4” critically sampled DWTs constituting thé

eration from the traditional critically sampled discretawglet cale 2D RDWT and averages the resulting reconstructions

transform (DWT) to produce an overcomplete representatiot Igetr]:fgrz ort(;_rllte can _equllvalenilyt_empllosy al mo_rti computation
While the well-known shift variance of the DWT arises fronf, > STMoient IHering implementation [18]. In either casse

its use of downsampling, the RDWT is shift invariant to gbserve that the single-phase inverse (4) is generally it t

single translations — [536 MT applied identically to each same as the multiple-phase inverse (5), but the two do yield

) . ) L h me result if the argument is in the ran X
subband since the spatial sampling rate is fixed across.sct Ig same result if the argument is in the range spack(ef;

We observe that, if we resolve values off the integer-pixel oy o
sampling lattice using an interpolation operaf@r) which is slp. 1] = s'[p, 1] = s"[p, 1], )
linear and shift-invariant, the RDWT can be considered to kg long as{S*)[p,]}, in (4) and (5) is the RDWT of some
shift invariant even for non-integer translatiofisn the sense s[p, t]. We note that this will not always be the case since the
that range space of the RDWT is larger than the original signal
domain, the RDWT being overcomplete. Finally, like the
R {I (S[I’ -9, ﬂ)] - {I (S(k)[p -9, t}) }k - @) forward transform, the multiple-phase inverse is shifeiriant
There are several ways to implement the RDWT, arf§der linear fractional-pixel interpolation,
several ways to represent the resulting overcomplete set of . *) "
coefficients. The most obvious implementation, direct iapl {{I (S [p— 6,t])} } - I(S p— d,t]), @)
mentation of thealgorithmea trous[9,10] results in subbands

that are exactly the same size as the original signal, asrshol{Nile the single-phase inverse is not. _ .
for a 2D signal in Fig. 1. The advantage of this “spatially Additional understanding of the significance of the invensi

coherent” representation is that each RDWT coefficient fg the RDWT_ results from considering the theory of frames
located within its subband in its spatially correct positio [19]- From this perspective, the RDWT is a frarlne_operator,
As illustrated in Fig. 1, by appropriately subsampling eacy: While the multiple-phase inverse RDWTR™", is the
subband of an RDWT, one can produce exactly the salﬁ%rrespondllng pseudo-inverse operator [18]. As a pseudo-
coefficients as does a critically sampled DWT applied to tHBVErsé, R~ can be considered to consist of an orthogonal
same input signal. In fact, in @-scale 2D RDWT, there projection onto the range space & followed by a map-

exist 47 distinct critically sampled DWTs corresponding tcPing into the original signal domain. It has been observed

the choice between even- and odd-phase subsampling at é&é’ﬂ] that the fact that an inverse frame operator includes a
scale of decomposition projection makes frame operators such as the RDWT robust

On the other hand, the most popular coefficient® added noise. Specifically, noise in the RDWT domain, when

representation scheme employed in RDWT-based video cod®l@PPed to the original signal domain via the pseudo-inverse
[8,12—17] is that of a “coefficient tree,” as illustrated ifgF2 typically undergoes a S|gn|f|cant reduction in variancecsin
for a 1D signal. This tree representation is easily created 1€ component of the noise orthogonal to the range space of
employing filtering and downsampling as in the usual critjca the RI?WT is eI_|m|nated by the prOJectlon._BeIow, we will see
sampled DWT:; however, all “phases” of downsampled coefat this projection property of the pseudo-inverse aneiffesct
ficients are retained and arranged as “children” of the $igrid" Noise lie at the heart of our proposed RWMH technique.
that was decomposed. The process is repeated on the lowpass
bands of all nodes to achieve multiple decomposition scales [1l. RDWT-BASED VIDEO CODING
It is straightforward to see that each path from root to l@af i The majority of prior work concerning RDWT-based video
the RDWT tree constitutes a distinct critically sampled DW-E;odmg originates in the work of Park and Kim [8], in which
and there arel’ such critically sampled DWTs in d-scale the system shown in Fig. 3 was proposed. In essence, the
2D decomposition. system of Fig. 3 works as follows. An input frame is decom-

Focusing on thalgorithma trouscoefficient representation, posed with a critically sampled DWT which is matched to an
given subbands$*[p, ], there are several methods to inverRpwT decomposition of the previous reconstructed frame.
the RDWT. Thesingle-phase inverseonsists of subsampling since these reconstructed RDWT coefficients are arranged in
the RDWT coefficients to extract one critically sampled DWthe tree representation similar to Fig. 2, the ME procedure
from the RDWT and inverting using the corresponding inversg this system amounts to identifying a particular critigal
DWT; i.e., sampled DWT in the reference-frame tree (a root-to-leaf)path

, _ and a displacement within that DWT. Subsequent work has

S[p,t] =D [l {S(k) [p’t]}k]’ “) offered refinements to the system depicted in Fig. 3, such as
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the deriving of motion vectors for each subband [12,15], anvariant. That is,R~! in (8) will be shift invariant in the
resolution [17], independently; sub-pixel accuracy ME][16sense of (7) to some of the motion between the two RDWT-
resolution-scalable coding [13,15,17]; and ME/MC based a@omain frames. On the other hand, other motion between
triangle meshes that are adapted to the contents of thenturthe two frames will not possess this invariance. With this
frame by exploiting the redundancy of the RDWT via a crossbservation in mind, we propose a simple RDWT-domain
subband correlation operator [20]. model of motion that is partitioned into shift-invariant dan
In most of the RDWT-based video-coding systems describsHift-variant components. Specifically, for spatial lsoatp
above, the redundancy inherent in the RDWT is used excla-subbandk, we model the motion from time— 1 to time¢
sively to permit ME/MC in the wavelet domain by overcomingvith the vector
the well-known shift variance of the critically sampled DWT.
In [7], we presented an entirely new use for the redundancy in d®[p] = & + £P[p). 9)
the RDWT; specifically, we employed transform redundancy to
yield multiple predictions of motion that were combinedoigt !N (9), 6 represents a simple translation of all spatial locations
single multihypothesis prediction. This approach repmese a in all subbands by the same vector; below, we will see that the
new paradigm in MHMC wherein diversity in transform phas@ultiple-phase inverse RDWT will be invariant to such global
yields multihypothesis predictions that significantly anbe 'Pan” motion as prescribed by (7). On the other hagid) p]
coding performance. The encoder of the resulting RWMIS a dense-motion field that varies with each spatial locatio
system is depicted in Fig. 4. in each subband, capturing more complex motion (zooms,
Intuitively, we observe that each of the critically sample#ptations, luminance variations, etc.); the inverse RDWT wi
DWTs within an RDWT will “view” motion from a different typically not be invariant to the translations of this dense
perspective. Consequently, if motion is predicted in the/RD Motion field.
domain, the multiple-phase inverse RDWR, ' (-), forms a ~ The ME process of the RWMH coder of Fig. 4 can be
multihypothesis prediction in the form of (1). Specificallyconsidered to estimate the motion field of (9) as
for a J-scale RDWT, the reconstruction from DWiTof the ~ ~ -
RDWT is §[p,t], 0 < i < 47, while w;[p,#] = 4=/, Vi. In d[p] =6 +£[p), (10)
the next section, we establish more rigorously the perfogea

advantages of RWMH since the same motion estimate is used in each subband in

order to reduce the motion-vector overhead (see Sec. V helow

IV ANALYSIS OF RWMH In subbandk, the error in this motion estimate is then

In this section, we show analytically that the multihypoth- d®) [p] — a[p] —A+=F ], (11)
esis nature of our RWMH prediction of Fig. 4 offers sub-
stantial performance gain over the single-hypothesisiptied where A is the global pan-motion error,
of Fig. 3. In Fig. 4, the current and reference frames are N
transformed into RDWT coefficients, and MC takes place A=4§-09, (12)
in the RDWT domain, yielding{g(’“)[p,t]} , the RDWT-

=E) ] i -moti
domain prediction of the current frame. The spatial-domal%nd“ [p] is the dense-motion error,

rediction residual is then _ =
prediciion resictial =M [p] = € [p] - &[p] (13)
(MH) — _ R G ~ ~
Pt =sp, ] - R [{S [p’t]}k} We modeld, 8, £*)[p], and£[p] as random vector fields with
N < the mean of=*)[p] being the zero vector. We argue that it
=R [{5 p.t] - S [pvt]}k} is reasonable to assume that, although bgfthi[p] and its
estimateg[p] are likely to be highly correlated to the current
=R! [{R(k) b, t]} } , (8) frame, the difference between the ") [p], is independent
k of S [p,t]. Finally, we assume that the dense-motion error
where gR(k)[p’t] = g .1 — Sk p, 1] is the oi((z;"ne s.ubpand is indepenggant of that of another subband
RDWT-domain residual, and the superscript (MH) denotes th § p] is independent oE™[p] for k # 1), the dense-

this is the prediction error for the multihypothesis codér Omotlon error at one spatial position is independent of that a

Fig. 4; we will determine an equivalent quantity for the daxg another spatial pc(JjSTLOHE(h( _[p1]tlS| mdepender:téi) [p?]
hypothesis coder of Fig. 3 shortly. We note that a prelinjinaf®’. P1 7 P2), and the horizontal componen [p] is

version of the subsequent analysis with a simpler motidﬂdependent of its vgrtlcgl component.
model was first presented in [21]. With the true motion field given by (9), subbarkdof the

current frame is obtained from the reference frame via

A. Motion Model S [p,t] = I(S(k) [p—d™[p],t - 1]). (14)

In a general sense, motion of objects from one frame to
the next as viewed in the RDWT domain will consist ofn [22], a frame displaced by a dense motion field was approx-
some motions to which the multiple-phase inverse RDWT imated using a first-order Taylor-series expansion. Apmyi
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this approach to the right side of (14), we have in the RDWT domain produce identical translations in the
spatial domain as seen in the first terms on the right of (19)
I(S““’ [p—d®[p],t - 1]) = and (20). However, the other residudl(*)[p, ¢], results from
*) *) ) the error in estimating the dense motion of the model, and the
I(S [Pt — 1]) - VI (S [p,t — 1]) e dV[p] effect of this complex motion cannot be as easily charazeeri

o . . . 1
. (k) 1) - (k) 1 once it is mapped into the spatial domainBy *. In the next
I(S [p,# ]) VI<S [p,¢ ]) *0 section, we examine the nature 8f(*)[p,¢] and invoke a
_v] (S(k) p,t — 1]) o) p] white-noise model for this dense-motion residual. Thistehi
(15) noise model, in turn, permits us to draw some quantitative
= I(S(’“) [p—6,t— 1]) observations on the benefit of RWMH later in Sec. IV-C.
— (k) _ (k)
VI(S b, 1]) * &Pl B. Noise Model for the Dense-Motion Residual

. T — ) T
whereV = {% a%} is the spatial gradient operator, and Fgr:(k) [_P} = {&(ck) Pl ff/k)[Pﬂ » subband: of the dense-
e indicates a vector inner product. Similarly, subbahdn Motion residual of (18) is
the RDWT-domain prediction of the current frame using the

estimated motion field of (10) is N )[pat] )
—_eW®)p = (k) 1]} =B p == (k) —
590p,1 = 1(5™)[p — dlpl.t — 1] &P lpl 51 (SVlp.t-1) ¢ [p}ayl(s [p, ¢ 1])(,22)
= 1(S®¥p 8,6~ 1]) = VI(5¥p,t 1)) « £[o].

(16) Due to independence betwe&")[p, ¢] and VI(S(’“) [p,t —

- . . K
Subbandk of the RDWT-domain residual of (8) is then 1}), it is straightforward to establlgh that *)[p, ¢] has zero
mean. The cross-subband correlation between subbiands

R®p,t] = SWp,t] — SWp, ] | at spatial locationp; andp, is
- W(S(k) .t — 1]) o ¢V [p] r 7

0 0
- EEP p1)eWpo] | E| =TSP [py,t—1]) =SV [py, t—1]) |+
(5t 1)) o B D pi)epal| B (5% 11 0-11) 51 (Lo ])_
(50815l 1) e 21 (50 (50
- VI(S(k)[p,t _ 1]) e EWp]. 17) = ; ; /
We define E 5( )[Pﬂﬁ()[m] E 5y1<5(k)[p1,t—1])871(5([)[})2775—1]) +
N®[p,t] = -VI(S®[p,t—1]) e 2W[p]. (18) . CTo P ]
| . ( -, ) | E[gie e B| - 1(S® oy, t-1]) 1SV [pa, t-1])
In the spatial domain, the prediction residual of (17) isnthe - _6y 9y |
(23)
(MH) —
P 1] = As mentioned above, we assume that the horizontal component
R-1 [{I(S(k) p-08,t—1-S®[p—38,¢t— 1]>+ of the dense-motion error is independent of the vertical com
ponent, the dense-motion error at locatipn is independent

of that atp,, and the dense-motion errors in different subbands
are independent. Thus, the middle two terms on the right of
(23) are zero, and we have that the variance of the dense-
motion residual is

(k)
N [p,t]}k}, (19)
which, due to (6) and (7), becomes

rMp, 1] = I(s[p—8,t—1] - s[p—8,t —1]) +n™[p, 1],
( ) (20) () = E{N(k) [pl,t]N(l)[pg,t]]

Vék)ygg +v, (k) g% , k=landp; = pa,

where
nMI[p ] = R! {{N(k) [p,t}}]j. (21) = {07 S else (24)

The essence of this analysis is that the prediction residughere yéf), yé’“), ugﬁ% , and y$; are the variances (ﬁg(f?),
of the RWMH system consists of two components—a residugl,, 0 (ky (k)
due to the estimation of global pan motion as well as a rekldlﬁa ' 71(5 [t~ H)’ and ﬁl(s bt — 1])’ respec-
due to the estimation of the dense-motion field. The formévely, assuming these latter qugntities are spatiallficstary.
arises due to the fact that the multiple-phase inverse RDWT isFrom (24), we have that the dense-motion residual can be
invariant to bothd andé such that such global pan translationgsonsidered to be noise that is uncorrelated spatially akagel
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across subbands. Although (24) indicates that the variahce2D Fourier transform of the probability density function of
this dense-motion noise may vary from subband to subbatie global pan-motion erraA of (12); I(w) is the frequency
(i.e., it is a function ofk), we have observed empirically thatresponse of the interpolation filter used to resolve frawtio
the variances/ék) and ") of the dense-motion error tendpixel values;w = [w, wy]T; and(-) denotes the real part

to increase as the scale of the subband decreases, whilepfat complex number.

the same time, the vananceyé,%m and V(vgu of the spatial  As in [2], we focus on the prediction-residual variance to

gradient tend to decrease. The decrease in the variance of duge coding performance. From (25), the prediction-tesid
spatial gradient tends to counteract the increase in theedenygriance is

motion error variance, such that the resulting variancehef t
dense-motion residual tends to be somewhat level across the M =M T, (26)
subbands.
For example, referring to (13), we apply simple blockwhere M) is the variance oM [p, ],
based ME independently in each subband of the RDWT
of two frames of a video sequence in order to estimate a 1 ™ pm
motion field tailored to each individual subband; we taks thi Los = @/ / Pys(w) (2 - 2%[13(0-’)]) dw, (27)
estimate to bet®)[p]. We then estimate[p] by applying T

the block-based, cross-subband ME procedure described li&wd we have assumedw) = 1 (i.e., sinc interpolation [2])

order to simplify the analysis.

he key to our RWMH technique is embodied by (21)—
s we have discussed previously, the multiple-phase iavers
DWT is a pseudo-inverse frame operator which is tantamount

in Sec. V to generate a single, cross-subband motion fie
The difference between these two fields approximates t
dense-motion erroE*)[p], the variances of the horizontal
and vertical components of which we plot in Figs. 5-7 fo

frames from several sequences. Additionally, we plot irs¢he S
. . 9 . . Y . to a projection onto the range space of the RDWT followed
figures an estimate of the spatial-gradient varia & and

(k) ) . i by a mapping back into the original spatial domain. Since the
vys, 8s calculated using the 5-tap multldl_mensmnal-derlmtnfnumme_phase inverse RDWT is not invariant to the dense-
algorithm of [23] to provide a spatial gradient for each RDWTotion component of the motion model, the dense-motion
subband. Finally, we plot the resulting dense-motion reslid (ogiqyalN(*) [p, t] of (18) is almost certainly not in the range

variances/’ as calculated via (24) from the estimated’, space of the RDWT. Thus, the mapping of the dense-motion
ng), uggz, and uggy. Although we see thazt/](\f) does tend residual back to the spatial domain via (21) will result in a
to “peak” for one, sometimes two, subbands, it is more eoeduction in variance. Above, we modeled the dense-motion
less relatively constant for the other subbands. From oresidual N (*)[p,t] as zero-mean white noise of varianeg;
observations, the subbands at which these peak%“?noccur consequently, the following theorem quantifies the vaianc
vary from sequence to sequence. reduction resulting from the multiple-phase inverse RDWT.
As a consequence of these observations, we adopt a simplgheorem 1:1f noise present in the RDWT domain is zero-
model for the dense-motion residual that disregards excepean, white, and of variancey, and the wavelet filters
tional peaks inul(\',“). That is, we model theV*)[p ] as underlying theJ-scale 2D RDWT are orthonormal, then the
zero-mean white noise of a single varianeg. Although variance of the spatial-domain noise given by (21) is
we have argued that the dense-motion residual is reasonably
uncorrelated both within and across subbands, this white- 1\’
e mode | | 5|t (m) 1
motion residuals may have variance that varies somewhat o /
between subbands, such as depicted in Figs. 5-7. Howeger, tHe Proof of Theorem 1 is given in [25]. We note that
simplicity of this white-noise model permits us to analgtly 1heorem 1 will approximately hold if the wavelet filters
quantify a gain due to RWMH in the next section. Later, iknderlying the RDWT are “near-orthonormal” biorthogonal
Sec. VI, we will empirically evaluate this gain for real muni  filters, as is common in practice.
residuals. Now, suppose that, in Fig. 4, rather than mapping the
RDWT-domain prediction to the spatial domain using the
multiple-phase inverse RDWT, we instead use the singlegphas
inverse of (4). It is straightforward to see that this singlase
For a prediction residual such as given by (20), Girod [2,24hC process is equivalent to the single-hypothesis system

. . . . . . VN
noise model is somewhat of an oversimplification since real uﬁLMH) = (28)

C. Performance Gain

derives the 2D power spectral density to be shown in Fig. 3. In this case, (8) becomes
A (w) =
2 2 r(SH) p.t] = s[p,t] — D1 [ g(k) p. i :|
@%%H)(w)‘l(w)’ —&-@SS(w)(l—i—‘I(w)‘ —2%{[((_‘,)]3(“;)})7 [p.1] = s[p, 1] l{ [ ]}k
(25) =D [i {89p,1] - 5®p, t]}k} .29

where ®,,(w) and ®M"(w) are the 2D power spectral
densities ofs[p,t] andn™M[p, t], respectively;P(w) is the where last equality is due to (4) and (6). Furthermore, (19)
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becomes Examining the numerical results of Figs. 8 and 9 leads to
the following important observations:

rSp, 1] = « RWMH systematically reduces the prediction-residual
1 k k ~ variance over that of single-phase ME/MC, although the
p {l {I(S( p-dt-1-5Yp-0.t- ”) performance gain may be small if ME is inaccurate, or
*) the power of the dense-motion residual is low.
+N [pvt]} }7 (30) « As ME becomes highly accurate, RWMH produces a 7-
F dB reduction in prediction-residual variance as compared
to single-phase ME/MC.
« For a given ME accuracy, the larger the power of the
dense-motion residual, the more effective RWMH is at
p-1 {l R{I (s[p—&t—l]—s[p—&t—l]) +N®) [pﬂj]H' reducing the prediction-residual variance.
Finally, we note that the analysis here predicts that greate
G RwmH performance gains come from larger dense-motion
Applying (4), (6), and the linearity of (-) then gives residuals. On the other hand, if the dense-motion residual i
N zero, there will be no RWMH performance gain—this latter
r®p 1] = I<S[P —0,t—1]-s[p-0d,t— 1]) +n®W[p,t], situation corresponds to the case in which motion from frame
(32) to frame is a simple global pan translation such tbﬁ’f [p]
with in (9), and consequentiE™*)[p] in (18), is zero. Thus, we
nSHp, ] = D! [l {N(k) [pﬂf]} ] (33) expect to see little or no gain in practice due to RWMH for
k sequences that consist largely of simple translationaianot
Since the DWT is a unitary transform, and the dense-motidf-9-, camera pans), while sequences with complex motien ar
residual is RDWT-domain noise equally present in all phaseaPt to see more substantial benefit.
the spatial-domain variance in this case is

which, through use of (3), can be expressed as

rSp, ] =

V. IMPLEMENTATION OF BLoCK-BASED RWMH
VSLSH) =vn, (34)

_ . _ . We now consider some issues related to implementation of
assuming, as before, that the dense-motion residual in ®&MH as depicted in Fig. 4. We note that the motion model
RDWT domain is zero-mean, white, and of variance. The  embodied by (9) consists of a single global pan-motion teans

prediction-residual variance is then tion which is “refined” at each spatial location in each suitha
JSH) _ (SH) | (35) @ndependently with a dense-motion fi_eld. A (_jense-n_wotiormlfiel

4 " 58 in each subband unfortunately entails an impracticallgdar
wherel',, is once again given by (27). motion-vector coding overhead; thus, we invoke block-tase

To quantity the gain of the multihypothesis approach ov@&C using a single cross-subband motion-vector field. A block
the single-hypothesis approach, let us assume, as was wloneased motion model will be equivalent to (9) for only the

[2,24], an isotropic signal power spectrum, smallest block size; i.e., single-pixel blocks. On the otiend,

L, in the extreme case of a very large block size encompassing

o7 witwr) ° the entire frame, the block-based model degenerates tdynere

Cys(w) = QT% 1+ w2 ’ (36) global pan motion with the dense-motion component of (9)

being zero—as discussed above, there is no RWMH gain for

wherew, = —1n(0.93), and an isotropic Gaussian density othis extreme case. For MC with practical block sizes, we
varianceva for the global pan-motion erroA such that expect performance somewhere between the two extremes,

va with gains due to RWMH approaching those predicted by
P(w) = exp {—2 (w2 + wg)} (37) the analysis of Sec. IV-C as the block size decreases towards

single-pixel blocks.

Under these models, we numerically evaluafé”) from (26) In implementing RWMH with ME/MC applied on a block-
andvSH from (35) versus displacement accuratjor several by-block basis, we note that, in d-scale RDWT decom-
noise variances in Fig. 8, wheré = 1log, (12va) such position, eachB x B block in the original spatial domain
that 3 = —1 for half-pixel accuracy,0 = —2 for quarter- corresponds t&.J + 1 blocks of the same size, one in each
pixel accuracy, etc. [26]. It is evident in Fig. 8 that thesubband. We call the collection of these co-located blocks
multihypothesis approach results in a significant decréasea set; each set contains all the different phases of RDWT
prediction-residual variance, particularly when ME is@a@te coefficients. In the ME procedure, block matching is used to
(6 small). We define the difference in prediction-residualetermine the motion of each set as a whole. Specifically,

variance in dB between the two approaches as a block-matching procedure uses a cross-subband distortio
(MH) measure that sums absolute errors for each block of the set
v = 10log;, <T(SH)> (38) similar to the cross-subband ME procedure of [8]. However
vy

in our measure, the coefficients from all phases in both
and numerically evaluate as 3 varies in Fig. 9. the current and reference frames contribute to the distorti
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measurement, in contrast to the measure of [8], in which onlyWe see empirically in Table | that RWMH does, in fact,
coefficients from a single critically subsampled DWT in theeduce the prediction-residual variance over that of singl

current frame contribute. phase MC in much the same way as predicted by the analysis
Specifically, the motion vector for the set locatedpais of Sec. IV-C. Specifically, as the number of scales of decompo
~ ) sition is varied with a fixed block size, we see an exponential
d[p] = arg e MAE (p, d), (39) relationship betweeny and J as indicated by (28)—ag/

increases; decreases by a decreasing amount. Additionally,

where the mean absolute error (MAE) is we observe that the reduction in prediction-residual varéa

B-1B-1 T increases with increasing ME accuracy, again as predicted b
MAE (p.d) = 5 S>> AE(p+ [k 1] .d), (40) Fig. 9.
k=0 1=0 Most saliently, however, we see that Ads held fixed, the
and the absolute error (AE) is gain  varies significantly with the block size used in MC.
This effect is anticipated, since the smaller the block,silze
AE(p,d) = 2‘(2J+1)‘B,][p,t] —Bslp+d,t— 1]‘+ closer the block motion model embodies the combined pan-

motion/dense-motion model of (9). In fact, we see that, for
extremely small MC block sizes, the reduction in prediction
residual variance is approximately 6 dB, which is ratheselo
to the maximum gain of 7 dB as anticipated by Fig. 9. The
Hjlp,t] — Hj[p+d,t — 1]‘+ (41) larger block sizes, being closer to simple global pan motion
alone, result in reduced RWMH performance gain. Thus, we
Dj[p,t] — Dj[p +d,t — 1}‘), conclude that RWMH does indeed lead to variance reduction
for a real MC residual in much the same way as indicated
by the analysis of Sec. IV-C, which can be considered to
represent an ideal performance bound approached by block-
based ME/MC as the block size decreases.

J
> 2 ( Vilp,t] - Vilp+d,t - 11’*
j=1

In the above equationd;;, H;, V;, andD; are the baseband,
horizontal, vertical, and diagonal subbands, respegtivat
scalej. A window W of the rangg—W, W] both horizontally
and vertically is used for the block search. .
B. Coding Performance

It is well-known that a reduction in prediction-error vari-

. ] ) __ance,~, does not necessarily portend an increase in rate-
We now investigate RWMH through a series of empiricgistortion performance in a real video-coding system. @ens
evaluations. Throughout this section, we consider grdgsc%uenﬂy' we now investigate whether the RWMH performance

sequences, and all wavelet transforms (DWT and RDWT) uggin predicted by Fig. 9 and exhibited empirically in Table |
the popular 9-7 biorthogonal filter with symmetric extemsio yegyits in improved rate-distortion performance duringuat

ME is full search with a window of/" = 15, and subpixel coding of MC residuals. In the following simulation results
accuracy is implemented via a multiple-step interpolatiofje code grayscale sequences with the first frame intra-coded
procedure consisting of filtering and bilinear interpatatis in (I-frame) while all subsequent frames use ME/MC (P-frames)
MPEG-4 [27]. We first focus on an experimental investigatioBjnce SPIHT [28], used as the core compression engine in

VI. EXPERIMENTAL RESULTS

our attention to real coding performance. of the sequence is coded at exactly the specified target rate.
We consider three systems: the RWMH system of Fig. 4; the
A. Experimental Investigation of Theoretical Analysis “RDWT Block” system of Fig. 3; and a third system, “Spatial

Block,” which refers to block-based MC in the spatial domain

: We have observec_l empiricall_y that the prediction residu_ e traditional method employed in video-coding standards
n our.RV\(MH tgchmque does in fact updergo a substanti llowed by an entire-image DWT and then SPIHT coding of
reduction in variance as guggested by Fig. 9. I_:or example,tme DWT coefficients. All three system implementations can
Table 1, we cons!der a single frame from a wdep SEQUENKR found within the QccPack [29] software package.

and use the previous frame to create a MC prediction of theTabIe | indicates that we should choose the MC block size

first frame in the RDWT domain. We then invert the resultingO . . . .
. . X . . be as small as possible in order to maximize the gain of the
RDWT-domain residual using both the single-phase inverse gf; P 9

. : o RivMH technique. However, Table | neglects the ramifications
(4). and the mult!ple-pha_se nverse of (5)' calcglamnga((si?) of the rate overhead needed to transmit the motion-vectar fie
using the resgltmg spatial-domain vanan(zég' andvr ) in any real system. Of the block sizes considered in Table I,
In order to divorce the effects of ME from those of S'”glebnly B =8 and B — 16 are practical choices as the motion-

and multiple-phase MC, we fix the motion-vector field for botlye 4 overhead is likely to be too great for the other values
inverse transforms to be the same field, estimated SeQarmelConsequently, from this point on, we focus on a block size of

the spatial domain between the two original frames. Thelt@sup _ 8: we have verified empirically thaB — 8 is the better
are shown in Table | for ggveral block siz8s sev_eral scales performing block size of the two in the RWMH system used
J of transform decomposition, and several subpixel accasaci

0. 1seeht t p: / / qccpack. sour cef or ge. net
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in this section. Additionally, Table | indicates that we gl As a final comment concerning our empirical results, let us
chooseJ as big as possible. Unfortunately, the RDWT Bloclobserve that, in comparing Fig. 4 to Fig. 3, one would expect
system of Fig. 3 is constrained such tiat> 27 in order that RWMH to be somewhat more computationally complex than
each cross-scale block used in ME/MC includes coefficierdscorresponding single-phase implementation due to the pre
from all subbands. Consequently, with= 8, we useJ = 3 ence of multiple redundant transforms which are substintia
henceforth. more expensive to compute than the usual critically sampled
Initially, in order to separate the effects of ME from thoséransform. Furthermore, the RWMH ME process is driven by a
of MC, we use the same motion-vector fields for all thremultiple-phase error measure (40) which involves subitiyt
systems; these fields are calculated independently from there coefficients than the single-phase measure employed in
systems using full-search ME on the original frames in thee sp[8]. That said, we note that the RWMH implementation we use
tial domain. The resulting gain in average PSNR for RWMHere actually runs much faster than the corresponding RDWT
over the other systems operating at a fixed rate is tabulatedBlock implementation. This is due to the fact that, within
Table Il. Table Il indicates that, even when all systems tise tthe RDWT Block coder, the RDWT is initially calculated in
same motion vectors, the RWMH system outperforms both tkiee spatially coherent representation of Fig. 1 before dpein
Spatial Block and RDWT Block systems on the order of 0.5subsampled into the tree representation of Fig. 2, and this
1 dB. Additionally, we see that the performance gain inaesassubsampling procedure is extremely time-consuming. While
with increasing ME accuracy as was predicted by both Fig.i@would be possible to produce the tree representation di-
as well as Table I. rectly, the spatially coherent representation greatlylifates
More realistic results are obtained when all systems estimahe interpolation process necessary for subpixel accuracy
their own ME fields and incur the overhead of motion vectofsurthermore, it is unclear that such direct production & th
in their bitstreams. Under these conditions, we have olesentree representation would result in any net gain in exeoutio
the highest PSNR for quarter-pixel accuragy £ —2), the speed, since the overhead necessary for coefficient aduyess
relatively large overhead of eighth-pixel accuracy reémglt in the ME distortion measure would be substantial for the
in diminished rate-distortion performance. Consequently tree representation, particularly at subpixel accuraayaiA,
present average PSNR figures at a fixed rate fo= —2 however, these practical concerns are largely outsidedbjes
in Table Ill, and rate-distortion performance for severat s of our current considerations.
guences over a range of rates in Figs. 10-12. Table Ill and
Figs. 10-12 illustrate that multihypothesis predictiontire
form of RWMH achieves a significant gain—on the order of
1.0 to 1.5 dB—over single-phase prediction for sequencds wit In this paper, we have examined a new class of MHMC—
complex motion, which make up a majority of the sequenc@hase-diversity multihypothesis—by analyzing a systentivhi
listed in Table Ill. The variance of the dense-motion realdudeploys MHMC in the domain of a redundant wavelet trans-
is relatively large for these sequences. As foretold by Big. form. Recognizing that RDWT coefficients with different
RWMH offers substantial gain over single-phase predictigshases view motion from different perspectives, this RWMH
for these sequences, even at relatively low ME accuracgesirsystem treats each critically sampled DWT within the RDWT
vy is large. On the other hand, more modest gains over the a separate hypothesis prediction. A multiple-phaseaseve
single-phase system are exhibited for the sequence “Mé&thelRDWT operation implicitly combines the multiple predic-
Daughter” which consists of simpler motion for whiely, is tions into a single spatial-domain prediction. The primary
relatively small, an observation again in line with Fig. 9.  contribution of the work we report here is an analytical
Although the focus of this paper is to investigate analerivation that quantifies the performance gain of RWMH
Iytically and empirically the performance gain of RWMHover single-phase prediction. Key to this analysis is tluse
over single-phase prediction, we also include in Table Ilh the RDWT domain undergoes a substantial reduction in
performance figures for H.264/AVC [30], representative ofariance when the multiple-phase inverse RDWT is applied
the state of the art in hybrid, predictive-feedback-looged due to the fact that this pseudo-inverse contains a projecti
coding. We configure H.264/AVC encoding so as to duplicatmto the range space of the forward transform. Our analysis
the conditions used for the other coders as closely as pgssiladopts a motion model partitioned into a global pan-motion
Specifically, we use H.264/AVC JM 9.5 operating in baselineEomponent and a dense-motion component. The variance of
profile using8 x 8 ME/MC inter blocks without B-frames the prediction residual due to this latter component is tiyea
or rate-distortion optimization. As can be seen, the RWMKeduced in an RWMH system, leading to substantial reduction
implementation used here yields rate-distortion perfaroga in the overall prediction-residual variance and higheriogd
quite close to that of H.264/AVC for most of the sequencesfficiency. In fact, our analysis predicts that RWMH can reduc
We note that H.264/AVC is capable of substantially superidihe prediction-residual variance by up to 7 dB as ME becomes
rate-distortion performance when its advanced coding modaighly accurate. Our experimental observations suppagt th
are employed, and we anticipate that RWMH could benefihalysis in that our block-based implementation of RWMH,
from many of the same advanced coding techniques (LTMM@hich can be considered to approach the analytical motion
multiple MC block sizes, etc.) as well. Such an involvedhodel as the block size decreases, significantly outpegorm
implementation, however, lies largely outside the scopthef the single-phase system of [8] for sequences with complex
analytical discussion which is our focus here. motion which produce a substantial dense-motion residual.

VIl. CONCLUSIONS

IEEE Transactions on Image Processing, vol. 15, pp. 3102-3113, October 2006.



We emphasize that the goal of this paper is not to prg4] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, J. Baign,

duce a system with performance competitive with state-of-

the-art hybrid video coding. Rather, our aim is to further

the understanding of the RDWT and its use in ME/MQ15]
We believe that the analysis we present here represents a

significant theoretical advance in the field of wavelet-blase

video coding; as pertaining to practice, we anticipate that [16]

RWMH paradigm can contribute to further improving existing

hybrid video-coding structures when combined with a number
of other advanced ME/MC strategies. However, our recent]

focus has been on incorporating RWMH into emerging 3D

wavelet-based coders that eliminate the MC feedback loop
in favor of motion-compensated temporal filtering (MCTF) in1g]

order to provide full fidelity, spatial, and temporal scalifyp

Indeed, our recent work [31,32] has produced 3D RWMH- ar%g]
MCTF-based video coders with rate-distortion performangeo]

competitive with that of H.264/AVC but with the added
advantage of full scalability.
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TABLE |
~ CALCULATED ON THE MC RESIDUAL BETWEEN FRAMES52 AND 53 OF

THE “NYC” SEQUENCE FORMC BLOCKS OF SIZEB x B, RDWToF J
DECOMPOSITION SCALESAND ME ACCURACY OF 3.
v (dB) B

J B [p=-1]p=-2]p=-3 2 V
1 2 —4.29 —4.45 —4.65 slv
2| 2| —520 | —527 | —5.39 1o V
3 2 —5.68 —5.75 —5.84 -
4 2 —5.96 —6.01 —6.09 H, D, V, H, | D,
3 2 —5.68 —5.75 —5.84
3 4 —4.86 —5.29 —5.50
3 8 —2.02 —2.25 —2.35 Subsampled DWT
3 | 16 —0.92 —0.99 —1.05

H D

1 1
RDWT
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TABLE Il
DISTORTION RELATIVE TORWMH AVERAGED OVER ALL FRAMES OF THE SEQUENCE FOR RATE 08.5BPP
PSNR (dB) relative to RWMH system

Spatial Block RDWT Block
B=—-1]8=-2]8=-3|8=-1]8=-2]8=-3
Footballf —0.6 —-0.9 —1.1 —0.8 —1.1 —14
NYCt —-0.4 —0.5 —0.7 —0.8 —0.9 —1.1
Coastguard -0.2 -0.3 —-0.4 —-0.5 —0.6 -0.8
Table Tenni$ -0.3 —-0.4 —-0.6 —-0.6 —-0.9 —-1.2
Foremar —0.5 —0.8 —1.1 —0.6 —-0.9 -1.2
Susig* —0.4 —-0.7 —-1.1 —-0.7 —-0.9 —1.2
Mother-Daughter 0.0 —0.4 —0.7 —0.6 —0.9 —1.0

Sequences are 100 frames long, CB5Y x 288) at 30 Hz except}SIF (352 x 240), 125 Hz, *75 frames,?90 frames. Transforms usé = 3 scales of
decomposition. ME with block size dB = 8 performed separately on original frames in spatial domain waitisystems using the same motion-vector
fields; motion-vector overhead not included in rate.
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Fig. 4. The RWMH coderz~—! = frame delay,CODECis any stil-image Fig. 6. Variances of the dense-motion error, the spatial igradand the
coder operating in the spatial domain. RDWI denotes the multiple-phase dense-motion residual as estimated between frames 30 and &2 6fdble
inverse RDWT of (5). Tennis” sequence.
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Fig. 5. Variances of the dense-motion error, the spatial igradand the Fig. 7. Variances of the dense-motion error, the spatial igradand the
dense-motion residual as estimated between frames 52 and B8 tl¥C”  dense-motion residual as estimated between frames 30 and Bé& tBasie”
sequence. sequence.
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DISTORTION AVERAGED OVER ALL FRAMES OF THE SEQUENCE FOR RATE

TABLE Il

OF 0.5BPPR
PSNR (dB)

Spatial [ RDWT

Block Block RWMH | H.264
Football 28.8 28.8 30.3 30.5
NYC 39.0 38.6 40.0 40.6
Coastguard 32.4 32.1 33.3 334
Table Tennis 35.2 34.7 36.1 37.0
Foreman 39.1 39.5 40.8 41.9
Susie 40.9 41.0 42.3 42.4
Mother-Daughter| 45.0 45.3 45.9 46.3

Sequences are the same as in Table Il. Each systemJjuse8, 8 = —2,
and its own best-matching full-search ME with = 8; motion-vector

i

Prediction-residual variance, v

Fig. 8. Prediction-residual variance@"H) anduﬁSH) for the multihypothesis
and single-hypothesis systems, respectively, as the gtbbpllacement accu-
racy (3 varies at various dense-motion-residual varianegs The number of

overhead included in rate.
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Fig. 9.

pothesis and single-hypothesis systems as the global déspent accuracy
[ varies at various dense-motion-residual varianegs. The number of
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Fig. 10. Rate-distortion performance for “Football” for gtea-pixel accuracy
(B=-2,B=8,J =3).
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Fig. 11. Rate-distortion performance for “NYC” for quartgixel accuracy
B=-2,B=28,J=3).
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Fig. 12. Rate-distortion performance for “Susie” for quaiqiéxel accuracy
B=-2,B=8,J=23)
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