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Abstract— Multihypothesis motion compensation has been
widely used in video coding with previous attention focused
on techniques employing predictions that are diverse spatially
or temporally. In this paper, the multihypothesis concept is
extended into the transform domain by using a redundant
wavelet transform to produce multiple predictions that are
diverse in transform phase. The corresponding multiple-phase
inverse transform implicitly combines the phase-diverse predic-
tions into a single spatial-domain prediction for motion compen-
sation. The performance advantage of this redundant-wavelet-
multihypothesis approach is investigated analytically, invoking
the fact that the multiple-phase inverse involves a projection
that significantly reduces the power of a dense-motion residual
modeled as additive noise. The analysis shows that redundant-
wavelet multihypothesis is capable of up to a 7-dB reduction
in prediction-residual variance over an equivalent single-phase,
single-hypothesis approach. Experimental results substantiatethe
performance advantage for a block-based implementation.

Index Terms— multihypothesis motion compensation, redun-
dant wavelet transform, phase-diversity multihypothesis

I. I NTRODUCTION

Multihypothesis motion compensation (MHMC) [1] forms
a prediction of pixels[p, t] at spatial locationp =

[
x y

]T
in the current frame at timet as a combination of multiple
predictions in an effort to combat the uncertainty inherent
in the motion-estimation (ME) process. Assuming that the
combination of these hypothesis predictions is linear, we have
that the prediction of frames[p, t] is

s̃[p, t] =
∑

i

wi[p, t]s̃i[p, t], (1)

where the multiple predictions̃si[p, t] are combined accord-
ing to some weightswi[p, t]. A number of multihypothesis
techniques for motion compensation (MC) have been proposed
over the last decade. One approach to MHMC is to implement
multihypothesis prediction in the spatial dimensions; i.e., the
predictionss̃i[p, t] are culled from spatially distinct locations
in the reference frame. Included in this class of MHMC would
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be subpixel-accurate MC [2] and overlapped block motion
compensation (OBMC) [3,4]. Another approach is to deploy
MHMC in the temporal dimension by choosing predictions
s̃i[p, t] from multiple reference frames. Examples of this class
of MHMC are bidirectional prediction (B-frames) as used in
MPEG-2 and H.263 and long-term-memory motion compen-
sation (LTMMC) [5]. Of course, it is possible to combine
these two classes by choosing multiple predictions that are
diverse both spatially and temporally [6]. In [7], we introduced
a new class of MHMC by extending the multihypothesis-
prediction concept into the transform domain. Specifically,
we performed ME/MC in the domain of a redundant, or
overcomplete, wavelet transform and used multiple predictions
that were diverse in transform phase. We coined the term
redundant-wavelet multihypothesis (RWMH) to describe our
approach.

In this paper, we present a thorough investigation of the
performance advantage of RWMH over single-hypothesis
techniques that base ME/MC on merely a single phase, the
most prominent of these latter strategies being the system of
Park and Kim [8]. The centerpiece of this investigation is
an analytical derivation that quantifies the gain of RWMH
over single-phase prediction under a model that partitions
wavelet-domain motion into a global pan-motion translation
as well as a dense motion field. Our RWMH technique
substantially reduces the variance of the prediction residual
due to the dense-motion component thanks to the robustness
of overcomplete transforms to additive noise in the transform
domain. This noise robustness leads to a theoretical reduction
in the variance of the overall MC prediction residual by up
to 7 dB with respect to the single-phase system. A block-
based implementation, which approaches the analytical motion
model as the block size decreases, exhibits similar variance
reduction in experimental results and achieves substantial
gains in actual coding performance over an equivalent single-
hypothesis system.

The remainder of the manuscript is organized as follows.
We start with Sec. II which overviews theory behind the
redundant discrete wavelet transform (RDWT) [9–11] neces-
sary to understanding the analysis to follow. In Sec. III, we
overview RDWT-based video coding including our RWMH
technique. In Sec. IV, we present the main contribution of
the paper, an analytical derivation of the gain of RWMH
over single-phase prediction. Afterward, we consider some
issues relevant to practical implementation of RWMH in a
block-based system in Sec. V. We follow with Sec. VI in
which we present experimental results. Finally, we make some
concluding remarks in Sec. VII.
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II. THE REDUNDANT WAVELET TRANSFORM

Let s[p, t] be a video sequence sampled spatially on an
integer-pixel lattice and temporally at integer times and denote
the 2D spatial RDWT of frames[p, t] at time t as the
collection of subbandsS(k)[p, t],

{
S(k)[p, t]

}

k
= R

[
s[p, t]

]
. (2)

In essence, the RDWT [9–11] removes the downsampling op-
eration from the traditional critically sampled discrete wavelet
transform (DWT) to produce an overcomplete representation.
While the well-known shift variance of the DWT arises from
its use of downsampling, the RDWT is shift invariant to a
single translationδ =

[
δx δy

]T
applied identically to each

subband since the spatial sampling rate is fixed across scale.
We observe that, if we resolve values off the integer-pixel
sampling lattice using an interpolation operatorI(·) which is
linear and shift-invariant, the RDWT can be considered to be
shift invariant even for non-integer translationsδ in the sense
that

R

[
I
(
s[p − δ, t]

)]
=
{

I
(
S(k)[p − δ, t]

)}

k
. (3)

There are several ways to implement the RDWT, and
several ways to represent the resulting overcomplete set of
coefficients. The most obvious implementation, direct imple-
mentation of thealgorithmeà trous[9,10] results in subbands
that are exactly the same size as the original signal, as shown
for a 2D signal in Fig. 1. The advantage of this “spatially
coherent” representation is that each RDWT coefficient is
located within its subband in its spatially correct position.
As illustrated in Fig. 1, by appropriately subsampling each
subband of an RDWT, one can produce exactly the same
coefficients as does a critically sampled DWT applied to the
same input signal. In fact, in aJ-scale 2D RDWT, there
exist 4J distinct critically sampled DWTs corresponding to
the choice between even- and odd-phase subsampling at each
scale of decomposition.

On the other hand, the most popular coefficient-
representation scheme employed in RDWT-based video coders
[8,12–17] is that of a “coefficient tree,” as illustrated in Fig. 2
for a 1D signal. This tree representation is easily created by
employing filtering and downsampling as in the usual critically
sampled DWT; however, all “phases” of downsampled coef-
ficients are retained and arranged as “children” of the signal
that was decomposed. The process is repeated on the lowpass
bands of all nodes to achieve multiple decomposition scales.
It is straightforward to see that each path from root to leaf in
the RDWT tree constitutes a distinct critically sampled DWT,
and there are4J such critically sampled DWTs in aJ-scale
2D decomposition.

Focusing on thealgorithmà trouscoefficient representation,
given subbandsS(k)[p, t], there are several methods to invert
the RDWT. Thesingle-phase inverseconsists of subsampling
the RDWT coefficients to extract one critically sampled DWT
from the RDWT and inverting using the corresponding inverse
DWT; i.e.,

s′[p, t] = D−1

[y
{

S(k)[p, t]
}

k

]
, (4)

whereD−1(·) is the inverse DWT, and↓ denotes subsampling
to a single phase. Alternatively, one can employ amultiple-
phase inversewhich we denote as

s′′[p, t] = R−1

[{
S(k)[p, t]

}

k

]
. (5)

In such a multiple-phase inverse, one independently inverts
each of the4J critically sampled DWTs constituting theJ-
scale 2D RDWT and averages the resulting reconstructions
together, or one can equivalently employ a more computation-
ally efficient filtering implementation [18]. In either case, we
observe that the single-phase inverse (4) is generally not the
same as the multiple-phase inverse (5), but the two do yield
the same result if the argument is in the range space ofR(·);
i.e.,

s[p, t] = s′[p, t] = s′′[p, t], (6)

as long as
{
S(k)[p, t]

}
k

in (4) and (5) is the RDWT of some
s[p, t]. We note that this will not always be the case since the
range space of the RDWT is larger than the original signal
domain, the RDWT being overcomplete. Finally, like the
forward transform, the multiple-phase inverse is shift invariant
under linear fractional-pixel interpolation,

R−1

[{
I
(
S(k)[p − δ, t]

)}

k

]
= I
(
s′′[p − δ, t]

)
, (7)

while the single-phase inverse is not.
Additional understanding of the significance of the inversion

of the RDWT results from considering the theory of frames
[19]. From this perspective, the RDWT is a frame operator,
R, while the multiple-phase inverse RDWT,R−1, is the
corresponding pseudo-inverse operator [18]. As a pseudo-
inverse,R−1 can be considered to consist of an orthogonal
projection onto the range space ofR followed by a map-
ping into the original signal domain. It has been observed
[19] that the fact that an inverse frame operator includes a
projection makes frame operators such as the RDWT robust
to added noise. Specifically, noise in the RDWT domain, when
mapped to the original signal domain via the pseudo-inverse,
typically undergoes a significant reduction in variance since
the component of the noise orthogonal to the range space of
the RDWT is eliminated by the projection. Below, we will see
that this projection property of the pseudo-inverse and itseffect
on noise lie at the heart of our proposed RWMH technique.

III. RDWT-BASED V IDEO CODING

The majority of prior work concerning RDWT-based video
coding originates in the work of Park and Kim [8], in which
the system shown in Fig. 3 was proposed. In essence, the
system of Fig. 3 works as follows. An input frame is decom-
posed with a critically sampled DWT which is matched to an
RDWT decomposition of the previous reconstructed frame.
Since these reconstructed RDWT coefficients are arranged in
the tree representation similar to Fig. 2, the ME procedure
of this system amounts to identifying a particular critically
sampled DWT in the reference-frame tree (a root-to-leaf path),
and a displacement within that DWT. Subsequent work has
offered refinements to the system depicted in Fig. 3, such as
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the deriving of motion vectors for each subband [12,15], or
resolution [17], independently; sub-pixel accuracy ME [16];
resolution-scalable coding [13,15,17]; and ME/MC based on
triangle meshes that are adapted to the contents of the current
frame by exploiting the redundancy of the RDWT via a cross-
subband correlation operator [20].

In most of the RDWT-based video-coding systems described
above, the redundancy inherent in the RDWT is used exclu-
sively to permit ME/MC in the wavelet domain by overcoming
the well-known shift variance of the critically sampled DWT.
In [7], we presented an entirely new use for the redundancy in
the RDWT; specifically, we employed transform redundancy to
yield multiple predictions of motion that were combined into a
single multihypothesis prediction. This approach represented a
new paradigm in MHMC wherein diversity in transform phase
yields multihypothesis predictions that significantly enhance
coding performance. The encoder of the resulting RWMH
system is depicted in Fig. 4.

Intuitively, we observe that each of the critically sampled
DWTs within an RDWT will “view” motion from a different
perspective. Consequently, if motion is predicted in the RDWT
domain, the multiple-phase inverse RDWT,R−1(·), forms a
multihypothesis prediction in the form of (1). Specifically,
for a J-scale RDWT, the reconstruction from DWTi of the
RDWT is s̃i[p, t], 0 ≤ i < 4J , while wi[p, t] = 4−J , ∀i. In
the next section, we establish more rigorously the performance
advantages of RWMH.

IV. A NALYSIS OF RWMH

In this section, we show analytically that the multihypoth-
esis nature of our RWMH prediction of Fig. 4 offers sub-
stantial performance gain over the single-hypothesis prediction
of Fig. 3. In Fig. 4, the current and reference frames are
transformed into RDWT coefficients, and MC takes place
in the RDWT domain, yielding

{
S̃(k)[p, t]

}

k
, the RDWT-

domain prediction of the current frame. The spatial-domain
prediction residual is then

r(MH)[p, t] = s[p, t] −R−1

[{
S̃(k)[p, t]

}

k

]

= R−1

[{
S(k)[p, t] − S̃(k)[p, t]

}

k

]

= R−1

[{
R(k)[p, t]

}

k

]
, (8)

where
{

R(k)[p, t]
}

k
=

{
S(k)[p, t] − S̃(k)[p, t]

}

k
is the

RDWT-domain residual, and the superscript (MH) denotes that
this is the prediction error for the multihypothesis coder of
Fig. 4; we will determine an equivalent quantity for the single-
hypothesis coder of Fig. 3 shortly. We note that a preliminary
version of the subsequent analysis with a simpler motion
model was first presented in [21].

A. Motion Model

In a general sense, motion of objects from one frame to
the next as viewed in the RDWT domain will consist of
some motions to which the multiple-phase inverse RDWT is

invariant. That is,R−1 in (8) will be shift invariant in the
sense of (7) to some of the motion between the two RDWT-
domain frames. On the other hand, other motion between
the two frames will not possess this invariance. With this
observation in mind, we propose a simple RDWT-domain
model of motion that is partitioned into shift-invariant and
shift-variant components. Specifically, for spatial location p

in subbandk, we model the motion from timet− 1 to time t

with the vector

d(k)[p] = δ + ξ(k)[p]. (9)

In (9), δ represents a simple translation of all spatial locations
in all subbands by the same vector; below, we will see that the
multiple-phase inverse RDWT will be invariant to such global
“pan” motion as prescribed by (7). On the other hand,ξ(k)[p]
is a dense-motion field that varies with each spatial location
in each subband, capturing more complex motion (zooms,
rotations, luminance variations, etc.); the inverse RDWT will
typically not be invariant to the translations of this dense-
motion field.

The ME process of the RWMH coder of Fig. 4 can be
considered to estimate the motion field of (9) as

d̂[p] = δ̂ + ξ̂[p], (10)

since the same motion estimate is used in each subband in
order to reduce the motion-vector overhead (see Sec. V below).
In subbandk, the error in this motion estimate is then

d(k)[p] − d̂[p] = ∆ + Ξ(k)[p], (11)

where∆ is the global pan-motion error,

∆ = δ − δ̂, (12)

andΞ(k)[p] is the dense-motion error,

Ξ(k)[p] = ξ(k)[p] − ξ̂[p]. (13)

We modelδ, δ̂, ξ(k)[p], andξ̂[p] as random vector fields with
the mean ofΞ(k)[p] being the zero vector. We argue that it
is reasonable to assume that, although bothξ(k)[p] and its
estimatêξ[p] are likely to be highly correlated to the current
frame, the difference between the two,Ξ(k)[p], is independent
of S(k)[p, t]. Finally, we assume that the dense-motion error
of one subband is independent of that of another subband
(Ξ(k)[p] is independent ofΞ(l)[p] for k 6= l), the dense-
motion error at one spatial position is independent of that at
another spatial position (Ξ(k)[p1] is independent ofΞ(k)[p2]
for p1 6= p2), and the horizontal component ofΞ(k)[p] is
independent of its vertical component.

With the true motion field given by (9), subbandk of the
current frame is obtained from the reference frame via

S(k)[p, t] = I
(
S(k)

[
p − d(k)[p], t − 1

])
. (14)

In [22], a frame displaced by a dense motion field was approx-
imated using a first-order Taylor-series expansion. Applying
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this approach to the right side of (14), we have

I
(
S(k)

[
p − d(k)[p], t − 1

])
=

I
(
S(k)[p, t − 1]

)
−∇I

(
S(k)[p, t − 1]

)
• d(k)[p]

= I
(
S(k)[p, t − 1]

)
−∇I

(
S(k)[p, t − 1]

)
• δ

−∇I
(
S(k)[p, t − 1]

)
• ξ(k)[p]

= I
(
S(k)[p − δ, t − 1]

)

−∇I
(
S(k)[p, t − 1]

)
• ξ(k)[p],

(15)

where∇ =
[

∂
∂x

∂
∂y

]T
is the spatial gradient operator, and

• indicates a vector inner product. Similarly, subbandk in
the RDWT-domain prediction of the current frame using the
estimated motion field of (10) is

S̃(k)[p, t] = I
(
S(k)

[
p − d̂[p], t − 1

])

= I
(
S(k)[p − δ̂, t − 1]

)
−∇I

(
S(k)[p, t − 1]

)
• ξ̂[p].

(16)

Subbandk of the RDWT-domain residual of (8) is then

R(k)[p, t] = S(k)[p, t] − S̃(k)[p, t]

= I
(
S(k)[p − δ, t − 1] − S(k)[p − δ̂, t − 1]

)

−∇I
(
S(k)[p, t − 1]

)
• ξ(k)[p]

+ ∇I
(
S(k)[p, t − 1]

)
• ξ̂[p]

= I
(
S(k)[p − δ, t − 1] − S(k)[p − δ̂, t − 1]

)

−∇I
(
S(k)[p, t − 1]

)
• Ξ(k)[p]. (17)

We define

N (k)[p, t] = −∇I
(
S(k)[p, t − 1]

)
• Ξ(k)[p]. (18)

In the spatial domain, the prediction residual of (17) is then

r(MH)[p, t] =

R−1

[{
I
(
S(k)[p − δ, t − 1] − S(k)[p − δ̂, t − 1]

)
+

N (k)[p, t]
}

k

]
, (19)

which, due to (6) and (7), becomes

r(MH)[p, t] = I
(
s[p−δ, t−1]− s[p− δ̂, t−1]

)
+n(MH)[p, t],

(20)
where

n(MH)[p, t] = R−1

[{
N (k)[p, t]

}

k

]
. (21)

The essence of this analysis is that the prediction residual
of the RWMH system consists of two components—a residual
due to the estimation of global pan motion as well as a residual
due to the estimation of the dense-motion field. The former
arises due to the fact that the multiple-phase inverse RDWT is
invariant to bothδ andδ̂ such that such global pan translations

in the RDWT domain produce identical translations in the
spatial domain as seen in the first terms on the right of (19)
and (20). However, the other residual,N (k)[p, t], results from
the error in estimating the dense motion of the model, and the
effect of this complex motion cannot be as easily characterized
once it is mapped into the spatial domain byR−1. In the next
section, we examine the nature ofN (k)[p, t] and invoke a
white-noise model for this dense-motion residual. This white-
noise model, in turn, permits us to draw some quantitative
observations on the benefit of RWMH later in Sec. IV-C.

B. Noise Model for the Dense-Motion Residual

ForΞ(k)[p] =
[
ξ
(k)
x [p] ξ

(k)
y [p]

]T
, subbandk of the dense-

motion residual of (18) is

N (k)[p, t] =

−ξ(k)
x [p]

∂

∂x

I
(
S(k)[p, t−1]

)
−ξ(k)

y [p]
∂

∂y

I
(
S(k)[p, t−1]

)
.

(22)

Due to independence betweenΞ(k)[p, t] and∇I
(
S(k)[p, t −

1]
)

, it is straightforward to establish thatN (k)[p, t] has zero
mean. The cross-subband correlation between subbandsk and
l at spatial locationsp1 andp2 is

E
[
N (k)[p1, t]N

(l)[p2, t]
]

=

E
[
ξ(k)
x [p1]ξ

(l)
x [p2]

]
E

[
∂

∂x

I
(
S(k)[p1, t−1]

) ∂

∂x

I
(
S(l)[p2, t−1]

)]
+

E
[
ξ(k)
x [p1]ξ

(l)
y [p2]

]
E

[
∂

∂x

I
(
S(k)[p1, t−1]

) ∂

∂y

I
(
S(l)[p2, t−1]

)]
+

E
[
ξ(k)
y [p1]ξ

(l)
x [p2]

]
E

[
∂

∂y

I
(
S(k)[p1, t−1]

) ∂

∂x

I
(
S(l)[p2, t−1]

)]
+

E
[
ξ(k)
y [p1]ξ

(l)
y [p2]

]
E

[
∂

∂y

I
(
S(k)[p1, t−1]

) ∂

∂y

I
(
S(l)[p2, t−1]

)]
.

(23)

As mentioned above, we assume that the horizontal component
of the dense-motion error is independent of the vertical com-
ponent, the dense-motion error at locationp1 is independent
of that atp2, and the dense-motion errors in different subbands
are independent. Thus, the middle two terms on the right of
(23) are zero, and we have that the variance of the dense-
motion residual is

ν
(k)
N = E

[
N (k)[p1, t]N

(l)[p2, t]
]

=

{
ν

(k)
ξx

ν
(k)
∇Sx

+ ν
(k)
ξy

ν
(k)
∇Sy

, k = l andp1 = p2,

0, else,
(24)

whereν
(k)
ξx

, ν
(k)
ξy

, ν
(k)
∇Sx

, and ν
(k)
∇Sy

are the variances ofξ(k)
x ,

ξ
(k)
y ,

∂

∂x

I
(
S(k)[p, t − 1]

)
, and

∂

∂y

I
(
S(k)[p, t − 1]

)
, respec-

tively, assuming these latter quantities are spatially stationary.
From (24), we have that the dense-motion residual can be

considered to be noise that is uncorrelated spatially as well as
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across subbands. Although (24) indicates that the varianceof
this dense-motion noise may vary from subband to subband
(i.e., it is a function ofk), we have observed empirically that
the variancesν(k)

ξx
and ν

(k)
ξy

of the dense-motion error tend
to increase as the scale of the subband decreases, while, at
the same time, the variancesν(k)

∇Sx
and ν

(k)
∇Sy

of the spatial
gradient tend to decrease. The decrease in the variance of the
spatial gradient tends to counteract the increase in the dense-
motion error variance, such that the resulting variance of the
dense-motion residual tends to be somewhat level across the
subbands.

For example, referring to (13), we apply simple block-
based ME independently in each subband of the RDWT
of two frames of a video sequence in order to estimate a
motion field tailored to each individual subband; we take this
estimate to beξ(k)[p]. We then estimatêξ[p] by applying
the block-based, cross-subband ME procedure described later
in Sec. V to generate a single, cross-subband motion field.
The difference between these two fields approximates the
dense-motion errorΞ(k)[p], the variances of the horizontal
and vertical components of which we plot in Figs. 5–7 for
frames from several sequences. Additionally, we plot in these
figures an estimate of the spatial-gradient variancesν

(k)
∇Sx

and

ν
(k)
∇Sy

as calculated using the 5-tap multidimensional-derivative
algorithm of [23] to provide a spatial gradient for each RDWT
subband. Finally, we plot the resulting dense-motion residual
variancesν(k)

N as calculated via (24) from the estimatedν
(k)
ξx

,

ν
(k)
ξy

, ν
(k)
∇Sx

, and ν
(k)
∇Sy

. Although we see thatν(k)
N does tend

to “peak” for one, sometimes two, subbands, it is more or
less relatively constant for the other subbands. From our
observations, the subbands at which these peaks inν

(k)
N occur

vary from sequence to sequence.
As a consequence of these observations, we adopt a simple

model for the dense-motion residual that disregards excep-
tional peaks inν

(k)
N . That is, we model theN (k)[p, t] as

zero-mean white noise of a single varianceνN . Although
we have argued that the dense-motion residual is reasonably
uncorrelated both within and across subbands, this white-
noise model is somewhat of an oversimplification since real
motion residuals may have variance that varies somewhat
between subbands, such as depicted in Figs. 5–7. However, the
simplicity of this white-noise model permits us to analytically
quantify a gain due to RWMH in the next section. Later, in
Sec. VI, we will empirically evaluate this gain for real motion
residuals.

C. Performance Gain

For a prediction residual such as given by (20), Girod [2,24]
derives the 2D power spectral density to be

Φ(MH)
rr (ω) =

Φ(MH)
nn (ω)

∣∣∣I(ω)
∣∣∣
2

+Φss(ω)

(
1+
∣∣∣I(ω)

∣∣∣
2

−2ℜ
[
I(ω)P (ω)

])
,

(25)

where Φss(ω) and Φ(MH)
nn (ω) are the 2D power spectral

densities ofs[p, t] and n(MH)[p, t], respectively;P (ω) is the

2D Fourier transform of the probability density function of
the global pan-motion error∆ of (12); I(ω) is the frequency
response of the interpolation filter used to resolve fractional-
pixel values;ω =

[
ωx ωy

]T
; andℜ(·) denotes the real part

of a complex number.
As in [2], we focus on the prediction-residual variance to

gauge coding performance. From (25), the prediction-residual
variance is

ν(MH)
r = ν(MH)

n + Γss, (26)

whereν(MH)
n is the variance ofn(MH)[p, t],

Γss =
1

4π2

∫ π

−π

∫ π

−π

Φss(ω)

(
2 − 2ℜ

[
P (ω)

])
dω, (27)

and we have assumedI(ω) = 1 (i.e., sinc interpolation [2])
in order to simplify the analysis.

The key to our RWMH technique is embodied by (21)—
as we have discussed previously, the multiple-phase inverse
RDWT is a pseudo-inverse frame operator which is tantamount
to a projection onto the range space of the RDWT followed
by a mapping back into the original spatial domain. Since the
multiple-phase inverse RDWT is not invariant to the dense-
motion component of the motion model, the dense-motion
residualN (k)[p, t] of (18) is almost certainly not in the range
space of the RDWT. Thus, the mapping of the dense-motion
residual back to the spatial domain via (21) will result in a
reduction in variance. Above, we modeled the dense-motion
residualN (k)[p, t] as zero-mean white noise of varianceνN ;
consequently, the following theorem quantifies the variance
reduction resulting from the multiple-phase inverse RDWT.

Theorem 1:If noise present in the RDWT domain is zero-
mean, white, and of varianceνN , and the wavelet filters
underlying theJ-scale 2D RDWT are orthonormal, then the
variance of the spatial-domain noise given by (21) is

ν(MH)
n =

νN

5

[
1 + 4

(
1

16

)J
]

. (28)

The proof of Theorem 1 is given in [25]. We note that
Theorem 1 will approximately hold if the wavelet filters
underlying the RDWT are “near-orthonormal” biorthogonal
filters, as is common in practice.

Now, suppose that, in Fig. 4, rather than mapping the
RDWT-domain prediction to the spatial domain using the
multiple-phase inverse RDWT, we instead use the single-phase
inverse of (4). It is straightforward to see that this single-phase
MC process is equivalent to the single-hypothesis system
shown in Fig. 3. In this case, (8) becomes

r(SH)[p, t] = s[p, t] −D−1

[y
{

S̃(k)[p, t]
}

k

]

= D−1

[y
{

S(k)[p, t] − S̃(k)[p, t]
}

k

]
, (29)

where last equality is due to (4) and (6). Furthermore, (19)
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becomes

r(SH)[p, t] =

D−1

[y
{

I
(
S(k)[p − δ, t − 1] − S(k)[p − δ̂, t − 1]

)

+N (k)[p, t]

}

k

]
, (30)

which, through use of (3), can be expressed as

r(SH)[p, t] =

D−1

[y R
[
I
(
s[p−δ, t−1]−s[p−δ̂, t−1]

)
+N (k)[p, t]

]]
.

(31)

Applying (4), (6), and the linearity ofI(·) then gives

r(SH)[p, t] = I
(
s[p− δ, t− 1]− s[p− δ̂, t− 1]

)
+ n(SH)[p, t],

(32)
with

n(SH)[p, t] = D−1

[y
{

N (k)[p, t]
}

k

]
. (33)

Since the DWT is a unitary transform, and the dense-motion
residual is RDWT-domain noise equally present in all phases,
the spatial-domain variance in this case is

ν(SH)
n = νN , (34)

assuming, as before, that the dense-motion residual in the
RDWT domain is zero-mean, white, and of varianceνN . The
prediction-residual variance is then

ν(SH)
r = ν(SH)

n + Γss, (35)

whereΓss is once again given by (27).
To quantity the gain of the multihypothesis approach over

the single-hypothesis approach, let us assume, as was done in
[2,24], an isotropic signal power spectrum,

Φss(ω) =
2π

ω2
0

(
1 +

ω2
x + ω2

y

ω2
0

)−
2

3

, (36)

whereω0 = − ln(0.93), and an isotropic Gaussian density of
varianceν∆ for the global pan-motion error∆ such that

P (ω) = exp

[
−

ν∆

2

(
ω2

x + ω2
y

)]
. (37)

Under these models, we numerically evaluateν(MH)
r from (26)

andν(SH)
r from (35) versus displacement accuracyβ for several

noise variances in Fig. 8, whereβ = 1
2 log2 (12ν∆) such

that β = −1 for half-pixel accuracy,β = −2 for quarter-
pixel accuracy, etc. [26]. It is evident in Fig. 8 that the
multihypothesis approach results in a significant decreasein
prediction-residual variance, particularly when ME is accurate
(β small). We define the difference in prediction-residual
variance in dB between the two approaches as

γ = 10 log10

(
ν(MH)

r

ν
(SH)
r

)
(38)

and numerically evaluateγ asβ varies in Fig. 9.

Examining the numerical results of Figs. 8 and 9 leads to
the following important observations:

• RWMH systematically reduces the prediction-residual
variance over that of single-phase ME/MC, although the
performance gain may be small if ME is inaccurate, or
the power of the dense-motion residual is low.

• As ME becomes highly accurate, RWMH produces a 7-
dB reduction in prediction-residual variance as compared
to single-phase ME/MC.

• For a given ME accuracy, the larger the power of the
dense-motion residual, the more effective RWMH is at
reducing the prediction-residual variance.

Finally, we note that the analysis here predicts that greater
RWMH performance gains come from larger dense-motion
residuals. On the other hand, if the dense-motion residual is
zero, there will be no RWMH performance gain—this latter
situation corresponds to the case in which motion from frame
to frame is a simple global pan translation such thatξ(k)[p]
in (9), and consequentlyΞ(k)[p] in (18), is zero. Thus, we
expect to see little or no gain in practice due to RWMH for
sequences that consist largely of simple translational motion
(e.g., camera pans), while sequences with complex motion are
apt to see more substantial benefit.

V. I MPLEMENTATION OF BLOCK-BASED RWMH

We now consider some issues related to implementation of
RWMH as depicted in Fig. 4. We note that the motion model
embodied by (9) consists of a single global pan-motion transla-
tion which is “refined” at each spatial location in each subband
independently with a dense-motion field. A dense-motion field
in each subband unfortunately entails an impractically large
motion-vector coding overhead; thus, we invoke block-based
MC using a single cross-subband motion-vector field. A block-
based motion model will be equivalent to (9) for only the
smallest block size; i.e., single-pixel blocks. On the other hand,
in the extreme case of a very large block size encompassing
the entire frame, the block-based model degenerates to merely
global pan motion with the dense-motion component of (9)
being zero—as discussed above, there is no RWMH gain for
this extreme case. For MC with practical block sizes, we
expect performance somewhere between the two extremes,
with gains due to RWMH approaching those predicted by
the analysis of Sec. IV-C as the block size decreases towards
single-pixel blocks.

In implementing RWMH with ME/MC applied on a block-
by-block basis, we note that, in aJ-scale RDWT decom-
position, eachB × B block in the original spatial domain
corresponds to3J + 1 blocks of the same size, one in each
subband. We call the collection of these co-located blocks
a set; each set contains all the different phases of RDWT
coefficients. In the ME procedure, block matching is used to
determine the motion of each set as a whole. Specifically,
a block-matching procedure uses a cross-subband distortion
measure that sums absolute errors for each block of the set
similar to the cross-subband ME procedure of [8]. However
in our measure, the coefficients from all phases in both
the current and reference frames contribute to the distortion
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measurement, in contrast to the measure of [8], in which only
coefficients from a single critically subsampled DWT in the
current frame contribute.

Specifically, the motion vector for the set located atp is

d̂[p] = arg min
d∈W

MAE(p,d), (39)

where the mean absolute error (MAE) is

MAE(p,d) =
1

B2

B−1∑

k=0

B−1∑

l=0

AE(p +
[
k l

]T
,d), (40)

and the absolute error (AE) is

AE(p,d) = 2−(2J+1)
∣∣∣BJ [p, t] − BJ [p + d, t − 1]

∣∣∣+
J∑

j=1

2−(2j+1)

(∣∣∣Vj [p, t] − Vj [p + d, t − 1]
∣∣∣+

∣∣∣Hj [p, t] − Hj [p + d, t − 1]
∣∣∣+

∣∣∣Dj [p, t] − Dj [p + d, t − 1]
∣∣∣
)

.

(41)

In the above equations,Bj , Hj , Vj , andDj are the baseband,
horizontal, vertical, and diagonal subbands, respectively, at
scalej. A window W of the range[−W,W ] both horizontally
and vertically is used for the block search.

VI. EXPERIMENTAL RESULTS

We now investigate RWMH through a series of empirical
evaluations. Throughout this section, we consider grayscale
sequences, and all wavelet transforms (DWT and RDWT) use
the popular 9-7 biorthogonal filter with symmetric extension.
ME is full search with a window ofW = 15, and subpixel
accuracy is implemented via a multiple-step interpolation
procedure consisting of filtering and bilinear interpolation as in
MPEG-4 [27]. We first focus on an experimental investigation
of the theoretical analysis embodied by Fig. 9 before turning
our attention to real coding performance.

A. Experimental Investigation of Theoretical Analysis

We have observed empirically that the prediction residual
in our RWMH technique does in fact undergo a substantial
reduction in variance as suggested by Fig. 9. For example, in
Table I, we consider a single frame from a video sequence
and use the previous frame to create a MC prediction of the
first frame in the RDWT domain. We then invert the resulting
RDWT-domain residual using both the single-phase inverse of
(4) and the multiple-phase inverse of (5), calculatingγ via (38)
using the resulting spatial-domain variancesν

(MH)
r andν

(SH)
r .

In order to divorce the effects of ME from those of single-
and multiple-phase MC, we fix the motion-vector field for both
inverse transforms to be the same field, estimated separately in
the spatial domain between the two original frames. The results
are shown in Table I for several block sizesB, several scales
J of transform decomposition, and several subpixel accuracies
β.

We see empirically in Table I that RWMH does, in fact,
reduce the prediction-residual variance over that of single-
phase MC in much the same way as predicted by the analysis
of Sec. IV-C. Specifically, as the number of scales of decompo-
sition is varied with a fixed block size, we see an exponential
relationship betweenγ and J as indicated by (28)—asJ
increases,γ decreases by a decreasing amount. Additionally,
we observe that the reduction in prediction-residual variance
increases with increasing ME accuracy, again as predicted by
Fig. 9.

Most saliently, however, we see that asJ is held fixed, the
gain γ varies significantly with the block size used in MC.
This effect is anticipated, since the smaller the block size, the
closer the block motion model embodies the combined pan-
motion/dense-motion model of (9). In fact, we see that, for
extremely small MC block sizes, the reduction in prediction-
residual variance is approximately 6 dB, which is rather close
to the maximum gain of 7 dB as anticipated by Fig. 9. The
larger block sizes, being closer to simple global pan motion
alone, result in reduced RWMH performance gain. Thus, we
conclude that RWMH does indeed lead to variance reduction
for a real MC residual in much the same way as indicated
by the analysis of Sec. IV-C, which can be considered to
represent an ideal performance bound approached by block-
based ME/MC as the block size decreases.

B. Coding Performance

It is well-known that a reduction in prediction-error vari-
ance, γ, does not necessarily portend an increase in rate-
distortion performance in a real video-coding system. Conse-
quently, we now investigate whether the RWMH performance
gain predicted by Fig. 9 and exhibited empirically in Table I
results in improved rate-distortion performance during actual
coding of MC residuals. In the following simulation results,
we code grayscale sequences with the first frame intra-coded
(I-frame) while all subsequent frames use ME/MC (P-frames).
Since SPIHT [28], used as the core compression engine in
all experiments, produces an embedded coding, each frame
of the sequence is coded at exactly the specified target rate.
We consider three systems: the RWMH system of Fig. 4; the
“RDWT Block” system of Fig. 3; and a third system, “Spatial
Block,” which refers to block-based MC in the spatial domain,
the traditional method employed in video-coding standards,
followed by an entire-image DWT and then SPIHT coding of
the DWT coefficients. All three system implementations can
be found within the QccPack [29] software package.1

Table I indicates that we should choose the MC block size
to be as small as possible in order to maximize the gain of the
RWMH technique. However, Table I neglects the ramifications
of the rate overhead needed to transmit the motion-vector field
in any real system. Of the block sizes considered in Table I,
only B = 8 andB = 16 are practical choices as the motion-
vector overhead is likely to be too great for the other values.
Consequently, from this point on, we focus on a block size of
B = 8; we have verified empirically thatB = 8 is the better
performing block size of the two in the RWMH system used

1seehttp://qccpack.sourceforge.net
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in this section. Additionally, Table I indicates that we should
chooseJ as big as possible. Unfortunately, the RDWT Block
system of Fig. 3 is constrained such thatB ≥ 2J in order that
each cross-scale block used in ME/MC includes coefficients
from all subbands. Consequently, withB = 8, we useJ = 3
henceforth.

Initially, in order to separate the effects of ME from those
of MC, we use the same motion-vector fields for all three
systems; these fields are calculated independently from the
systems using full-search ME on the original frames in the spa-
tial domain. The resulting gain in average PSNR for RWMH
over the other systems operating at a fixed rate is tabulated in
Table II. Table II indicates that, even when all systems use the
same motion vectors, the RWMH system outperforms both the
Spatial Block and RDWT Block systems on the order of 0.5–
1 dB. Additionally, we see that the performance gain increases
with increasing ME accuracy as was predicted by both Fig. 9
as well as Table I.

More realistic results are obtained when all systems estimate
their own ME fields and incur the overhead of motion vectors
in their bitstreams. Under these conditions, we have observed
the highest PSNR for quarter-pixel accuracy (β = −2), the
relatively large overhead of eighth-pixel accuracy resulting
in diminished rate-distortion performance. Consequently, we
present average PSNR figures at a fixed rate forβ = −2
in Table III, and rate-distortion performance for several se-
quences over a range of rates in Figs. 10–12. Table III and
Figs. 10–12 illustrate that multihypothesis prediction inthe
form of RWMH achieves a significant gain—on the order of
1.0 to 1.5 dB—over single-phase prediction for sequences with
complex motion, which make up a majority of the sequences
listed in Table III. The variance of the dense-motion residual
is relatively large for these sequences. As foretold by Fig.9,
RWMH offers substantial gain over single-phase prediction
for these sequences, even at relatively low ME accuracy, since
νN is large. On the other hand, more modest gains over the
single-phase system are exhibited for the sequence “Mother&
Daughter” which consists of simpler motion for whichνN is
relatively small, an observation again in line with Fig. 9.

Although the focus of this paper is to investigate ana-
lytically and empirically the performance gain of RWMH
over single-phase prediction, we also include in Table III
performance figures for H.264/AVC [30], representative of
the state of the art in hybrid, predictive-feedback-loop video
coding. We configure H.264/AVC encoding so as to duplicate
the conditions used for the other coders as closely as possibly.
Specifically, we use H.264/AVC JM 9.5 operating in baseline
profile using 8 × 8 ME/MC inter blocks without B-frames
or rate-distortion optimization. As can be seen, the RWMH
implementation used here yields rate-distortion performance
quite close to that of H.264/AVC for most of the sequences.
We note that H.264/AVC is capable of substantially superior
rate-distortion performance when its advanced coding modes
are employed, and we anticipate that RWMH could benefit
from many of the same advanced coding techniques (LTMMC,
multiple MC block sizes, etc.) as well. Such an involved
implementation, however, lies largely outside the scope ofthe
analytical discussion which is our focus here.

As a final comment concerning our empirical results, let us
observe that, in comparing Fig. 4 to Fig. 3, one would expect
RWMH to be somewhat more computationally complex than
a corresponding single-phase implementation due to the pres-
ence of multiple redundant transforms which are substantially
more expensive to compute than the usual critically sampled
transform. Furthermore, the RWMH ME process is driven by a
multiple-phase error measure (40) which involves substantially
more coefficients than the single-phase measure employed in
[8]. That said, we note that the RWMH implementation we use
here actually runs much faster than the corresponding RDWT
Block implementation. This is due to the fact that, within
the RDWT Block coder, the RDWT is initially calculated in
the spatially coherent representation of Fig. 1 before being
subsampled into the tree representation of Fig. 2, and this
subsampling procedure is extremely time-consuming. While
it would be possible to produce the tree representation di-
rectly, the spatially coherent representation greatly facilitates
the interpolation process necessary for subpixel accuracy.
Furthermore, it is unclear that such direct production of the
tree representation would result in any net gain in execution
speed, since the overhead necessary for coefficient addressing
in the ME distortion measure would be substantial for the
tree representation, particularly at subpixel accuracy. Again,
however, these practical concerns are largely outside the scope
of our current considerations.

VII. CONCLUSIONS

In this paper, we have examined a new class of MHMC—
phase-diversity multihypothesis—by analyzing a system which
deploys MHMC in the domain of a redundant wavelet trans-
form. Recognizing that RDWT coefficients with different
phases view motion from different perspectives, this RWMH
system treats each critically sampled DWT within the RDWT
as a separate hypothesis prediction. A multiple-phase inverse
RDWT operation implicitly combines the multiple predic-
tions into a single spatial-domain prediction. The primary
contribution of the work we report here is an analytical
derivation that quantifies the performance gain of RWMH
over single-phase prediction. Key to this analysis is that noise
in the RDWT domain undergoes a substantial reduction in
variance when the multiple-phase inverse RDWT is applied
due to the fact that this pseudo-inverse contains a projection
onto the range space of the forward transform. Our analysis
adopts a motion model partitioned into a global pan-motion
component and a dense-motion component. The variance of
the prediction residual due to this latter component is greatly
reduced in an RWMH system, leading to substantial reduction
in the overall prediction-residual variance and higher coding
efficiency. In fact, our analysis predicts that RWMH can reduce
the prediction-residual variance by up to 7 dB as ME becomes
highly accurate. Our experimental observations support the
analysis in that our block-based implementation of RWMH,
which can be considered to approach the analytical motion
model as the block size decreases, significantly outperforms
the single-phase system of [8] for sequences with complex
motion which produce a substantial dense-motion residual.
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We emphasize that the goal of this paper is not to pro-
duce a system with performance competitive with state-of-
the-art hybrid video coding. Rather, our aim is to further
the understanding of the RDWT and its use in ME/MC.
We believe that the analysis we present here represents a
significant theoretical advance in the field of wavelet-based
video coding; as pertaining to practice, we anticipate thatthe
RWMH paradigm can contribute to further improving existing
hybrid video-coding structures when combined with a number
of other advanced ME/MC strategies. However, our recent
focus has been on incorporating RWMH into emerging 3D
wavelet-based coders that eliminate the MC feedback loop
in favor of motion-compensated temporal filtering (MCTF) in
order to provide full fidelity, spatial, and temporal scalability.
Indeed, our recent work [31,32] has produced 3D RWMH- and
MCTF-based video coders with rate-distortion performance
competitive with that of H.264/AVC but with the added
advantage of full scalability.
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TABLE I

γ CALCULATED ON THE MC RESIDUAL BETWEEN FRAMES52 AND 53 OF

THE “NYC” SEQUENCE FORMC BLOCKS OF SIZEB × B, RDWT OF J

DECOMPOSITION SCALES, AND ME ACCURACY OFβ.

γ (dB)
J B β = −1 β = −2 β = −3

1 2 −4.29 −4.45 −4.65
2 2 −5.20 −5.27 −5.39
3 2 −5.68 −5.75 −5.84
4 2 −5.96 −6.01 −6.09

3 2 −5.68 −5.75 −5.84
3 4 −4.86 −5.29 −5.50
3 8 −2.02 −2.25 −2.35
3 16 −0.92 −0.99 −1.05
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TABLE II

DISTORTION RELATIVE TO RWMH AVERAGED OVER ALL FRAMES OF THE SEQUENCE FOR RATE OF0.5 BPP.

PSNR (dB) relative to RWMH system
Spatial Block RDWT Block

β = −1 β = −2 β = −3 β = −1 β = −2 β = −3

Football† −0.6 −0.9 −1.1 −0.8 −1.1 −1.4
NYC† −0.4 −0.5 −0.7 −0.8 −0.9 −1.1
Coastguard −0.2 −0.3 −0.4 −0.5 −0.6 −0.8
Table Tennis‡ −0.3 −0.4 −0.6 −0.6 −0.9 −1.2

Foreman♯ −0.5 −0.8 −1.1 −0.6 −0.9 −1.2
Susie†∗ −0.4 −0.7 −1.1 −0.7 −0.9 −1.2
Mother-Daughter 0.0 −0.4 −0.7 −0.6 −0.9 −1.0

Sequences are 100 frames long, CIF (352 × 288) at 30 Hz except:†SIF (352 × 240), ‡25 Hz, ∗75 frames,♯90 frames. Transforms useJ = 3 scales of
decomposition. ME with block size ofB = 8 performed separately on original frames in spatial domain withall systems using the same motion-vector

fields; motion-vector overhead not included in rate.
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TABLE III

DISTORTION AVERAGED OVER ALL FRAMES OF THE SEQUENCE FOR RATE

OF 0.5 BPP.

PSNR (dB)
Spatial RDWT
Block Block RWMH H.264

Football 28.8 28.8 30.3 30.5
NYC 39.0 38.6 40.0 40.6
Coastguard 32.4 32.1 33.3 33.4
Table Tennis 35.2 34.7 36.1 37.0
Foreman 39.1 39.5 40.8 41.9
Susie 40.9 41.0 42.3 42.4
Mother-Daughter 45.0 45.3 45.9 46.3

Sequences are the same as in Table II. Each system usesJ = 3, β = −2,
and its own best-matching full-search ME withB = 8; motion-vector

overhead included in rate.
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Fig. 10. Rate-distortion performance for “Football” for quarter-pixel accuracy
(β = −2, B = 8, J = 3).
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Fig. 11. Rate-distortion performance for “NYC” for quarter-pixel accuracy
(β = −2, B = 8, J = 3).
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Fig. 12. Rate-distortion performance for “Susie” for quarter-pixel accuracy
(β = −2, B = 8, J = 3).
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