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Abstract
Background: West Nile virus (WNV) poses a significant health risk for residents of Mississippi.
Physicians and state health officials are interested in new and efficient methods for monitoring
disease spread and predicting future outbreaks. Geographic Information Systems (GIS) models have
the potential to support these efforts. Environmental conditions favorable for mosquito habitat
were modeled using GIS to derive WNV risk maps for Mississippi. Variables important to WNV
dissemination were selected and classified as static and dynamic. The static variables included road
density, stream density, slope, and vegetation. The dynamic variable represented seasonal water
budget and was calculated using precipitation and evaporation estimates. Significance tests provided
deterministic evidence of variable importance to the models.

Results: Several models were developed to estimate WNV risk including a landscape-base model
and seasonal climatic sub-models. P-values from t-tests guided variable importance ranking.
Variables were ranked and weights assigned as follows: road density (0.4), stream density (0.3),
slope (0.2) and vegetation (0.1). This landscape-base model was modified by climatic conditions to
assess the importance of climate to WNV risk. Human case data at the zip code level were used
to validate modeling results. All models were summarized by zip codes for interpretation and
model validation. For all models, estimated risk was higher for zip codes with at least one human
case than for zip codes where no human cases were recorded. Overall median measure of risk by
zip code indicated that 67% of human cases occurred in the high-risk category.

Conclusion: Modeling results indicated that dead bird occurrences are correlated with human
WNV risk and can facilitate the assessment of environmental variables that contribute to that risk.
Each variable's importance in GIS-based risk predictions was assigned deterministically. Our models
indicated non-uniform distribution of risk across the state and showed elevated risk in urban and
as well as rural areas. Model limitations include resolution of human data, zip code aggregation
issues, and quality/availability of vegetation and stream density layers. Our approach verified that
WNV risk can be modeled at the state level and can be modified for risk predictions of other
vector-borne diseases in varied ecological regions.
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Background
West Nile virus (WNV) was detected in Mississippi in
2001 and still poses a significant risk for the state resi-
dents. Duration and frequency trends of WNV outbreak
observed in Mississippi have corresponded closely to
those of the continental United States. In 2002, the U.S.
experienced the largest WNV epidemic ever recorded with
4,156 human cases and 284 deaths [1]. That same year,
Mississippi also observed a record high number of human
cases with 193 infections and 12 fatalities [2]. A year later
in 2003, there were more than 9,000 human cases with
220 deaths nationwide [1]. In Mississippi, 83 humans
tested positive and 2 deaths were recorded [3]. By 2004
the number of WNV infections in the U.S. decreased sig-
nificantly. There were 2,470 human cases and 88 deaths,
including 52 cases and 4 deaths in Mississippi [4,5]. The
risk of WNV appears to have significantly lowered over
time, but it is not clear whether this trend is due to
changes in climate, increased public awareness or immu-
nological responses. Most researchers agree that WNV is
"not a passing phenomenon" and that it is difficult to pre-
dict the course of the disease over the coming years [6,7].
Modeling tools available in Geographic Information Sys-
tems (GIS) have the potential to accurately monitor the
disease spread and enable prediction of future epidemio-
logical trends.

The goal of this project was to estimate the likelihood of
WNV infection in the state of Mississippi. This was
achieved by analyzing avian and environmental data to
model habitat suitability for mosquitoes that carry WNV.
In Mississippi, there are numerous species of mosquitoes;
however, only a few are believed to be responsible for
WNV transmission to humans (Table 1). Among the most
important are Aedes aegypti, A. albopictus, Culex pipiens, C.
quinquefasciatus, Ochlerotatus sollicitans, O. triseriatus, and
Psorophora columbiae [8,9]. These species inhabit a variety
of environments and can be found in urban as well as
rural settings. We viewed mosquito habitat suitability as a

surrogate for estimating potential risk of WNV infection
for humans and tested the usefulness of selected environ-
mental variables in an analytical risk model.

There were three important aspects of the study method-
ology. First, we assessed the WNV risk at a statewide scale.
Statewide risk assessments offer the potential for optimi-
zation of mosquito spraying, allocation of educational
materials, and sampling efforts. Second, we used environ-
mental variables to identify areas ecologically capable of
sustaining the virus. Finally, we developed an innovative
way to construct risk predictions using raster-based GIS
modeling.

A few published studies consider environmental aspects
of WNV infection [10-12]. Most researchers rely on dead
bird reports or mosquito data as an indicator that human
cases will occur in the surrounding area [13-17]. Since
avian (corvid) habitat distribution blankets the state, we
believe that a bird-based model is too general to describe
the coincidence of bird exposure to mosquito habitat and
therefore we concentrate on the suitability of mosquito
habitat. Another problem that impacts the usefulness of a
bird-based model is the current sampling scheme. Bird
testing varies by county, and generally when bird cases of
WNV are diagnosed in the laboratory, there is little or no
successive testing of dead birds. Consequently, the dead
bird data only signals presence or absence of WNV, not
the severity of the outbreak. For these reasons, bird data
alone may not adequately characterize the pattern of
WNV infection. However, bird data did play a vital role in
our models since the spatial depictions of WNV bird infec-
tions provided the baseline data necessary to correlate
environmental variables with virus infections.

Our approach is similar to studies that use environmental
variables within GIS to model risk of other vector-borne
diseases such as Lyme disease and Malaria [18-20]. Often,
these models assign variable significance heuristically,

Table 1: Important WNV mosquitoes of Mississippi [8,9].

Mosquito species Habitat preference Flight range Host preference Activity time Life cycle to transmission

Yellow Fever Aedes aegypti Shaded artificial containers, 
tree holes

200 m Mammals Crepuscular/day 10 – 20 days

Asian Tiger Aedes albopictus Artificial containers, tire piles 200 m Opportunistic Crepuscular/day 10 – 20 days
Salt Marsh Ochlerotatus 
sollicitans

Salt marshes, freshwater 2500 m Large mammals Crepuscular/day 7 – 10 days

Tree Hole Ochlerotatus 
triseriatus

Artificial containers, tree 
holes

200 m Mammals Crepuscular/day 28 days

Southern House Culex 
quinquefasciatus

Waters heavily polluted with 
organic material

2000 m Birds Crepuscular/night 10 – 14 days

Common House Culex 
pipiens

Open, polluted high in 
organics water

2000 m Birds Crepuscular/night 10 – 14 days

Dark Ricefield Psorophora 
columbiae

Open freshwater temporary 
pools and ditches

At least 10 miles Opportunistic Day/Night 4–10 days
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based on expert opinions. For this study we determined
variable significance and weights through a deterministic
algorithmic approach with variable ranking assigned
using statistical probability levels.

Methods
WNV data and preliminary spatial analyses
The study area comprised the entire state of Mississippi.
Data records were summarized and analyzed within
unique zip code boundaries. Data on laboratory-diag-
nosed human and bird cases recorded in years 2002 and
2003 were obtained from the Mississippi Department of
Health. Data records included date of occurrence, zip
code, and city name.

Each zip codes' centroid was calculated to enable spatial
depictions of human and bird occurrences necessary for
GIS-based spatial analyses. Spatial patterns of case occur-
rences were tested using Pearson's sample correlation
coefficient (r) and quadrat analysis. Correlation analyses
provided information about relationships between
human population and bird and human case occurrences,
while quadrat analysis provided information about ten-
dency of cases to occur as spatially random, uniform or
clumped.

A considerable number of zip codes (165 out of 405)
reported at least one human or bird WNV infection in
years 2002 and 2003 (Figure 1). We examined the pattern
of combined human and bird infections in the state.
Quadrat analysis indicated a tendency towards a random
distribution of cases [variance to mean ratio (VMR) =
1.29]. In general, when VMR approaches zero the distribu-
tion is uniform, a VMR near 1 indicates a random distri-
bution, while VMR near 2.0 indicates a tendency toward
clustered distribution [21].

Positive human cases of WNV in 2002 and 2003 indicated
tendency towards a clustered distribution (VMR = 1.82)
with cases diagnosed in 104 out of 405 zip codes (Figure
2). Large clusters of zip codes with diagnosed WNV
human cases are located in southern and central part of
Mississippi, whereas smaller and more isolated clusters
are scattered over the northern part of the state. Only one
or two cases were diagnosed in most (64%) zip codes
where human cases of WNV occurred. More serious out-
breaks (more than 3 cases) were observed in 29 zip codes.
Most zip codes with a high number of positive human
cases are densely populated. These areas are located close
to large metropolitan centers such as Jackson, Hattiesburg,
Clarksdale, and Greenville, which seems to indicate an
urban population bias. However, normalizing case count
by population revealed that the main outbreak centers are
actually located in rural areas (Figure 2). Non-significant
correlation (r = 0.094) between number of human cases

and human population provided further indication that a
population bias does not exist.

Patterns of positive bird cases are more difficult to inter-
pret spatially. At least one confirmed WNV bird case
occurred in 137 zip codes. A quadrat analysis indicated
that cases within these zip codes tended towards a ran-
dom distribution (VMR = 1.26) (Figure 3). While many
studies use dead bird data to model WNV, these data are
potentially biased [14,15,22]. A population density bias
was expected because a person must find a dead bird and
bring it in for testing. As Figure 3 shows, a larger number
of bird infections appears to cluster in zip codes that have
high population density. However, no significant correla-
tion between number of bird cases and human popula-
tion (r = 0.015) was observed. Consequently, geographic
locations of high population density do not appear to bias
the discovery of dead birds.

Interestingly, there appears to be no correlation between
the number of human infections and the number of bird
infections per zip code. However, the presence of bird case
occurrences and human case occurrences per zip code
were positively correlated (r = 0.488), indicating that
there is a strong spatial relationship between the coexist-
ence of human and bird WNV occurrences (Figure 4).
Both human and bird cases occurred in 46% of infected
areas. Also, the majority of zip codes that had human
cases but no bird cases were adjacent to areas of bird infec-
tions.

These preliminary analyses indicated that the dead bird
occurrence data signals the presence of WNV and provides
a fairly random sample of WNV infections on the Missis-
sippi landscape. This enabled tests for the environmental
variable states that may be related to human infections.

Variables
Review of the literature on vector-borne disease modeling
led to the conclusion that numerous environmental fac-
tors might be critical to WNV dissemination. The mode-
ling approach and variables used in our research are
similar to other GIS-based studies that assess environmen-
tal risk factors for Lyme and Malaria diseases using infor-
mation on land use, land cover, forest distribution, soils
and elevation [18-20].

Other researchers have also used these and similar varia-
bles in estimation approaches to assess WNV risk [10-12].
There are numerous recent examples of WNV risk mode-
ling employing a variety of environmental variables. For
example, Ruiz et al. (2004) used several factors related to
the physical environment such as elevation range, physio-
graphic region, and percentage of vegetation cover to
determine WNV risk during 2002 outbreak in the Chicago
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Study area context mapFigure 1
Study area context map. Areas of WNV infections (combined human and bird data) in Mississippi in 2002 and 2003.
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area. Tachiiri et al. (2006) developed a raster-based model
using basic geographic and temperature data to assess
WNV risk in British Columbia. Gibbs et al. (2006) deter-
mined that temperature, housing density, urban/subur-
ban land use, and physiographic region are important
variables affecting the geographic distributions of WNV in
the state of Georgia.

The selection of environmental variables used in our
study was based on evaluation of specific Mississippi mos-
quito habitat conditions and statewide raster data availa-
bility. We determined that slope, road density, stream
density, vegetation, aspect, soil permeability, and climatic
variables should be tested for their importance in mode-

ling infection risk. Although some multi-colinearity may
exist among these variables, the goal of this research was
to produce a spatial estimation of WNV risk to humans.
Since estimation was the goal, validated map accuracy of
estimated human risk superseded concerns of variable
multi-colinearity.

Variables were maintained as raster grids with 120 m cell
resolution and divided into two states: static and
dynamic. Static variables are assumed to change slowly or
not at all over time. Slope, road density, stream density,
and vegetation were selected to model static landscape
conditions on the basis of significance tests. The slope per-
cent layer was generated from a statewide 30 m Digital

WNV human cases in 2002 and 2003Figure 2
WNV human cases in 2002 and 2003. Occurrences categorized by number of cases per zip code (map on left) and WNV 
human cases normalized by population (number of WNV cases per 10,000 residents) (map on right).
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WNV bird cases in 2002 and 2003 categorized by number of cases per zip codeFigure 3
WNV bird cases in 2002 and 2003 categorized by number of cases per zip code.
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Areas of WNV infections in 2002 and 2003Figure 4
Areas of WNV infections in 2002 and 2003. Infections categorized by the type of occurrence: bird occurrence only, 
human occurrence only, human and bird occurrence.
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Elevation Model (DEM). The 2002 TIGER files from the
Census Bureau were used to create the road density grid.
The stream density layer was derived from merged data
including major rivers, perennial streams, and intermit-
tent streams. These data were acquired from the Missis-
sippi Automated Resource Information System (MARIS).
A GIS 'Kernel' density function was used to generate both
road and stream density layers. This function approxi-
mates a Gaussian distribution that assigns greater impor-
tance to values near the 'kernel' center and was
implemented in ArcGIS Spatial Analyst. The radius chosen
for each density calculation was selected using an iterative
process that maintained local variation without over-gen-
eralizing density estimates for each variable. The resulting
continuous-field surfaces show the density of roads and
stream networks throughout the state. The 120 m resolu-
tion surfaces provided site-specific information for each
grid cell that was further summarized by zip code to assess
the WNV risk. Vegetation was derived from Moderate Res-
olution Imaging Spectroradiometer (MODIS) 16-day
Normalized Difference Vegetation Index (NDVI) compos-
ites at 250 m resolution. The NDVI is a normalized ratio
of red and near infrared wavelengths commonly used to
estimate vegetative cover [23]. The data representing April
7–23, 2002 were downloaded from the Land Processes
Distributed Active Archive Center (LPDAA) [24]. MODIS
data were resampled to 120 m grid using a centroid to
point conversion followed by an Inverse Distance Weight-
ing (IDW) interpolation. Some data smoothing occurred
during this process. Although NDVI changes over time, we
treated it as a static variable. Using NDVI as a dynamic var-
iable is problematic for several reasons. The native 250 m
resolution requires resampling to the higher resolution of
other variables, which may introduce uncertainty into the
model. The NDVI compositing process can result in large
off-nadir view angles particularly in light of the high inci-
dence of cloud and haze during the summer months.
Also, the compositing process often fails to yield cloud-
free imagery over desired temporal periods associated
with mosquito life cycles. This was a major problem for
2002, which was the second wettest summer/fall period in
108 years of climate records. Cloud-free near-nadir NDVI
mosaics that were available for most of the summer and
fall were generally of poor quality. Finally, vegetation
response to rainfall events has variable site/species lag
times that are more accurately characterized by the cli-
matic variable.

Careful consideration was given to climate as the dynamic
variable in our study. In collaboration with Dr. C. Wax,
(MS State Climatologist), the influence of water budget
on mosquito populations was considered. The water
budget [Precipitation minus Evaporation (P-E)] is a
meaningful and critical measure of water that is available
in the environment to support mosquito breeding. The lit-

erature suggests that Culex species breed preferentially in
organically rich water associated with decreased breeding
areas while O. sollicitans mosquitoes prefer fresh water
conditions associated with increased breeding areas [9].
What is not clear in the literature is whether increased or
decreased breeding area influences risk of WNV infec-
tions. It is possible that decreased breeding areas consist-
ent with low P-E (drought) places urban dwellers at
increased risk while increased breeding areas consistent
with high P-E values (water surplus) places rural dwellers
at increased risk. As a consequence of this water-depend-
ent breeding behavior, both luxury rainfall and drought
conditions can result in risk conditions that affect differ-
ent geographical areas with diverse population patterns.
Our research tried to answer the question, how does cli-
mate impact WNV? We assessed the importance of climate
to WNV human occurrence by varying the weighting fac-
tor of climate in the GIS WNV risk prediction models.

Precipitation (P) and evaporation (E) data for 2002 and
2003 were used to characterize climate. Precipitation
minus evaporation (P-E) was a derived variable that rep-
resented water balance in the environment. Precipitation
(P) was derived from Multi-Sensor Precipitation Estimates
(MPE) by interpolating ground-bias corrected Doppler
Weather radar point data. Interpolation between the 4 km
Hydrologic Rainfall Analysis Project (HRAP) grid points
was performed using the IDW approach. IDW provides
reasonable estimates of precipitation for summer and fall
and is much easier to implement operationally than
methods like 'Kriging' that require interpreter analysis of
semi-variograms for each interpolation period [25]. Evap-
oration is considered to be a fairly constant element with
most values occurring in an interval between 2.54 mm
and 7.62 mm durring the summer-fall period. Evapora-
tion is also more spatially homogeneous than precipita-
tion [26]. The spatial homogeneity of evaporation lends
itself well to a splining interpolation technique that uses
mathematical functions that describe smoothly curving
features and can result in a close fit with relatively few
control points (typical of pan evaporation data) [27]. The
interpolated data resulted in a continuous-field layer of
evaporation that matched the resolution of the existing
continuous-field layer of precipitation. Subtracting daily
evaporation from precipitation produced a dynamic GIS
layer that expressed a moisture condition suitable for GIS
models.

Due to lack of sufficient human case validation data at
shorter temporal intervals, seasonal summaries were cho-
sen to provide adequate sample size for calculating the cli-
matic variable influence. Since the majority of WNV cases
occurred between June and November (Figure 5), the
models were constructed for summer and fall only.
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Methodology
The spatial distribution of bird infections provided test
locations critical for determining whether correlations
exist between environmental variables and disease inci-
dence. We used a simple additive weighting (SAW)
method for model construction and made several mode-
ling assumptions [28]. We assumed that: people become
infected within the zip code of their residence, selected
environmental factors are related to the WNV outbreak,
and probability of human infection is higher in zip codes
with confirmed WNV bird cases. Variable correlations
between bird infections and environmental conditions,
variable importance values, and the model development
process are detailed in Figure 6. Note that human occur-
rence data was used to validate models and to test for cli-
matic influences on the spatial distribution of the disease.

Human data for the years 2002 and 2003 were used to test
model prediction accuracies.

Environmental variables were all converted to raster for-
mat and subset to the boundary of Mississippi. All data
were transformed to a common map projection, and resa-
mpled to 120 m grid cell resolution. Statistical tests were
designed to establish how selected variables correlate to
WNV bird case occurrences and which variables are the
most significant on the basis of "difference in means test"
(t-test). For each variable, mean responses for infected ver-
sus non-infected zip codes were compared at the 95%
confidence level. Statistical tests were performed with
non-weighted occurrences, representing either presence or
absence of a positive bird case, rather than the number of
dead birds reported by zip code, since the correlation

Seasonal bird and human WNV occurrence dataFigure 5
Seasonal bird and human WNV occurrence data.
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analyses indicated a non-significant relationship between
human population and number of WNV avian infections.
Results of these tests helped to determine the importance
rank of each environmental variable in the risk models.
Ranks were established based on the t-test results: the
more significant t-test result the higher rank assigned.
Once the ranking was assigned, numerical weights were
calculated according to the following formula [28]:

Where:

wj is normalized weight for the jth criterion

n is the number of criteria under consideration (k =
1,2,...n)

rj is the rank position of the criterion

Modeling using SAW method requires standardization of
variable value ranges. We categorized each variable's val-
ues into 10 classes with 1 representing lowest risk and 10
representing highest risk. The "quantile" classification
method was used. With the "quantile" method, the range
of possible values is divided into certain number of inter-
vals (classes), so that the each class contains the same
number of features. This classification method is useful to
emphasize changes in the middle values of the distribu-
tion, because the intervals are usually wider at the
extremes [29].

w
n r

n rj
j

k
=

− +
− +

1
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Methodology flowchartFigure 6
Methodology flowchart.
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It is important to note the landscape-base model was cre-
ated using static variables only, and served as the baseline
for seasonal models. Four seasonal sub-models were cre-
ated varying the proportional contribution of climate in
the models to assess the importance of climate in the esti-
mation of the WNV risk.

Results and discussion
Landscape-base model
The landscape-base model was constructed with the
assumption that mosquito habitat suitability factors can
be used to estimate the risk of WNV. We disregard the
potential multi-colinearity among these factors and
assume that all are important to the WNV risk estimation.
The results of the statistical tests used to deterministically
assign ranks and compute weights for the landscape vari-
ables are shown in Table 2.

The significance test p-value for each variable was the
basis for ranking variable importance. Variables were
ranked and weights assigned from most important to least
important as follows: road density (0.4), stream density
(0.3), slope (0.2) and NDVI (0.1).

The test for equality of means for road density resulted in
a significant p-value (p < 0.001) indicating that road den-
sity for zip codes of WNV occurrence is significantly differ-
ent from zip codes of non-occurrence. A review of the
means indicates that higher values of road density are
related to the WNV occurrence and increased risk. These
results of statistical testing are supported by mosquito
habitat studies. For example, C. pipiens, often considered
the principal carrier of WNV, prefers to breed in human-
created environments. Features of a road system such as
culverts, storm drains and roadside ditches easily become
ideal mosquito-breeding sites, especially when clogged
and polluted [9].

A significant p-value (0.010) for stream density indicates
that stream density is different for zip codes of WNV
occurrence versus zip codes of non-occurrence. Compari-
son of the means indicates that the lower values of stream

density are related to WNV occurrence and higher risk.
Stream density is generally low in large flood plains (Mis-
sissippi River), but is relatively high in other river flood-
plains (Pascagoula, Tenn-Tom, etc). This is due to the
confluence of minor streams, multiple channels (braided
characteristics of southern Mississippi streams flowing
through sandy substrate), and meandering stream charac-
teristics. Running water and the flushing effect of large
rain events on the floodplains favors fresh water breeding
mosquito species (O. sollicitans, P. columbiae).

A significant p-value (0.028) for slope percent indicates
that mean slope is statistically different for zip codes of
WNV occurrence versus zip codes of non-occurrence.
Comparison of the means indicates that gentle slopes are
related to increased WNV risk. Water is more likely to
pond on gentle slopes, resulting in favorable mosquito
habitats.

Comparison of the means for NDVI (vegetation) indicates
that zip codes with WNV occurrence have slightly higher
NDVI values than zip codes with no WNV occurrence. The
p-value (0.251) suggests that there is essentially no statis-
tical difference between NDVI levels for zip codes with
WNV occurrence and those with the absence of WNV
cases. Literature suggests that vegetation is associated with
mosquito habitat. Many mosquito species use vegetation
as resting sites, while some species such as O. triseriatus
utilize tree holes for breeding purposes [30]. It is therefore
surprising that NDVI was not statistically correlated to
WNV infections. We suspected that this might be due to
the fact that the spring NDVI image did not coincide with
vegetation phenology important for resting behavior of
mosquitoes.

To summarize, in Mississippi WNV risk appears to be
associated with high road density, low stream density, and
gentle slopes. NDVI was included in the model since it is
suggested in the literature that vegetation is highly corre-
lated with mosquito breeding habitat. The linear additive
model for risk prediction was constructed as follows:

Table 2: Summary of static variable testing, standardization, model ranking and weight calculations.

Variable Relation to ecology of WNV 
vector mosquitoes

Mean for zip codes with T-test significance WNV risk level Variable

WNV bird 
occurrence

no WNV bird 
occurrence

(p-value) 1 – low risk
10 – high risk

Rank Weight

Road density Breeding sites along roads 1.7568 1.1550 .001 High rd. 10
Low rd. 1

1 0.4

Stream density Water as habitat 1.1200 1.1868 .010 High sd. 1
Low sd. 10

2 0.3

Slope percent Aspect of water outflow rate 7.1416 7.9886 .028 Gentle sl. 10 Steep sl. 1 3 0.2
NDVI vegetation Vegetation as resting and 

breeding sites
164.6797 160.9131 .251 High NDVI 10 Low NDVI 1 4 0.1
Page 11 of 19
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[road density] * 0.4 + [stream density] * 0.3 + [slope %] *
0.2 + [NDVI] * 0.1

Results of the landscape-base model are presented in Fig-
ure 7. Clearly, WNV risk is not uniform across the entire
state. Validation of the risk models using human cases
revealed that urban as well as rural areas might be at ele-
vated risk.

Seasonal models
Numerous studies discuss the relationship between cli-
mate and WNV infections [31-35]. Some authors advocate
that such a relationship exists and that climatic data can
be used to predict geographic spread of the disease as well
as to specify the location of the outbreaks [33,36]. Conse-
quently, one of the objectives of our study was to examine
the climatic aspects of WNV outbreaks in Mississippi.

A recent hypothesis links the emergence of WNV in
human populations with mild winters, prolonged periods
of hot, dry spring weather followed by a significant rain
events [32]. This hypothesis is also known as 'drought
hypothesis' and many facts appear to reinforce it [32].
However, this hypothesis explains only general climatic
trends associated with the WNV outbreaks and also
appears to contradict the commonly accepted assumption
that outbreaks of mosquito-borne diseases are amplified
by wet weather conditions. Further, it can be argued that
due to the major differences in mosquito habitat prefer-
ences both extremes could contribute to the outbreaks
(Table 1). For example, O. sollicitans mosquito breeding
conditions require rain and warm weather, while A.
aegypti or A. albopictus mosquitoes can survive long dry
periods and low temperatures [9].

Landscape-base modelFigure 7
Landscape-base model. Results by 120 m cell (map on left); estimated WNV risk median values summarized by zip code 
(map on right).
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Clearly, there are many interconnected ecological factors
that need to be considered and there are many uncertain-
ties about how climate contributes to the WNV outbreaks.
For these reasons the use of climate data was particularly
challenging in this project. We used an average seasonal
balance between precipitation and evaporation in the
analyses. In our opinion, this combined variable (P-E)
gives a good representation of the environmental water
balance. Seasonal risk models were generated on a basis of
the landscape-base model overlaid with climate data.
These models estimated the risk for summer 2002, fall
2002, summer 2003, and fall 2003.

T-tests for climatic variables resulted in insignificant p-val-
ues for three out of four P-E seasonal variables. Only the
results for summer 2003 P-E variable indicated significant
difference between zip code classes. A review of the means
for summer 2003 (1.1303 – occurrences and -0.8574 –
non-occurrence) indicated that higher values of P-E are
associated with increased risk of WNV occurrence. Results
for summer 2003 appear to support the assumption that
moist conditions contribute to the WNV outbreaks. The
results for other seasons are inconclusive. Therefore, four
seasonal models were created to investigate whether the
addition of climate data could improve the estimation of
the risk level. To test this objective each seasonal model
was divided into four sub-models. The sub-models were
created by varying the proportional contribution of cli-
mate to the landscape-base model (Figure 8). Using this
method we were able to examine each model's 'sensitivity'
and determine the significance of inclusion of climate
data in the seasonal models. Results of the seasonal mod-
els are presented in Figure 8. Varying the proportional
contribution of climate in the models resulted in substan-
tial changes in the final risk maps.

Models comparison and validation
The final WNV risk models were summarized by zip codes
for easier interpretation of results and model validation.
The landscape-base model was validated with combined
human infection data for years 2002 and 2003. Dynamic
models were validated with human infection data for
2002 and 2003 in the appropriate season.

Table 4 summarizes and compares the models, presents
the risk estimates and validation results. The risk estimates
were categorized by zip codes of human WNV occurrence
and non-occurrence. Majority, mean, and median meas-
ures were compared for their usefulness in estimating risk.
The average estimated risk was compared for zip codes
with human cases versus zip codes with no human cases
and differences recorded. The results indicated that for all
models, estimated risk is significantly higher for zip codes
with at least one human case than for zip codes where no
human cases were recorded. These results indicate that

bird occurrence data are correlated with human WNV risk
and can facilitate the assessment of environmental condi-
tions that contribute to that risk. Examination of differ-
ences in measures of central tendency indicates that the
median (66.9 %) and majority (66.8%) reflects the per-
centage of WNV human cases in the high-risk category
better than the mean (61.3%) (Table 4).

Addition of climatic data improved risk estimation for
summer models but worsened risk estimation for fall
models. Summer models were not improved when the
landscape-base/climate ratio exceeded 0.8/0.2. The ratio
reached an optimum at 0.8 for landscape-base layer and
0.2 for P-E layer.

In general, 2003 models estimated WNV risk better than
2002 models. This might be associated with the fact that
2002 outbreak was considerably more severe, widely
spread, occurred during a period of excessive rainfall, and
therefore risk was more difficult to assess. The National
Climatic Data Center reported that the fall of 2002 was
the 107th wettest year in 108 years that data have been
recorded. We believe that such a surplus of water in the
environment makes the importance of water budget diffi-
cult to assess in this unusual year. In 2003, with near aver-
age precipitation, WNV case numbers decreased and were
more spatially clustered. We assume that these clusters of
cases were located around areas environmentally predis-
posed to sustain the illness. Therefore, the results of 2003
models might provide better risk estimation. We believe
that models developed for other locations and in Missis-
sippi during 'normal' years will benefit from the inclusion
of climatic data. This is also borne out by other
researcher's conclusions [10]. It appears, however, that
severe outbreaks of mosquito-borne diseases might be dif-
ficult to predict and that prospective modeling efforts
should consider additional factors such as socio-eco-
nomic and demographic indicators if address-specific case
data are available.

Summarizing risk for all seasons shows that in Mississippi
environmental areas prone to sustaining the WNV include
the Gulf Coast, Jackson metropolitan center, Hattiesburg,
Meridian and Columbus, as well as numerous rural com-
munities across the state as shown in Figure 9.

Conclusion
In this study, spatial estimation of WNV risk in Mississippi
was carried out by analyzing avian and environmental
data to develop mosquito habitat suitability models. Sev-
eral environmental factors were considered and according
to our analysis, in Mississippi, WNV risk is correlated to
high road density, low stream density, and gentle slopes.
The methodology developed for this project is simple and
can be easily modified for this and other vector-borne dis-
Page 13 of 19
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Results of seasonal modelsFigure 8
Results of seasonal models.
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eases in varied ecological regions. Bird-based WNV risk
maps were validated with human case data and clearly
show areas environmentally prone to sustaining the virus.

Heuristic methods of variable weighting often employed
in GIS analyses can introduce personal bias in the mode-
ling process. In our study, statistical tests of environmen-
tal variable significance provided deterministic evidence
of each variables' importance (weight) for predicting risk
using GIS. This approach diminishes the possibility of
introduction of analyst' bias into the models.

The usefulness of selected static environmental variables
(road density, stream density, slope, vegetation) to assess
WNV risk was successfully demonstrated. The landscape-
base model employing these four environmental varia-
bles was validated with human occurrence data and indi-
cated geographic regions of increased infection risk to
humans. The overall usefulness of the dynamic climatic
variable into the models was uncertain. Both 2002 and
2003 summer models improved with the inclusion of cli-
matic data, but the landscape-base model (without cli-
mate) was superior for both fall models. More research is
needed to explore climatic data contributions to WNV risk
prediction and to define the role of climate in the disease
transmission process. For example, cumulative precipita-
tion estimates like those utilized in fire prediction models
(Keetch-Byram Drought Index) may be effectively incor-
porated. Currently, we are testing more temporally sensi-
tive models that use daily calculations of cumulative P-E
(as a departure from average) to represent water budget in
the environment at any point in time. Ongoing fire risk
studies have used this approach successfully to character-
ize fuel moisture conditions [37]. This climatic metric has
the potential to enable GIS-based spatial predictions of
favorable future mosquito habitat conditions.

A major limitation associated with our study is related to
the original case human occurrence data. These data on
WNV human infections are case occurrences by zip code.
This presented a spatial problem that could have been
avoided by using address-specific occurrence data; how-
ever, due to patient confidentiality issues, these data were
unavailable. For the same reason, social data such as

income, age or race that could greatly improve the results
of the modeling were not modeled in this study. Other
potential sources of urban mosquito habitat such as
ponds, flower pots, landfills, etc. were not considered in
this study. Similarly, habitat suitability requirements for
each mosquito species were not considered. Data neces-
sary for these in-depth analyses of relatively small geo-
graphic areas and highly specific ecological conditions
were not appropriate for this statewide study.

Additional modeling bias may exist due to various areal
extents of zip codes. For example, rural zip codes in Mis-
sissippi tend to be larger, and can potentially include
more heterogeneous ecological conditions. This could
result in weakened mean comparisons for variable states
in zip codes with WNV occurrence versus zip codes with-
out WNV occurrence. The importance (weight) of stream
density to the final landscape-base model may need to be
reassessed in light of an apparent contradiction between
certain mosquito species breeding sites (floodplains) and
risk. Final risk models indicate relatively low risk in some
of these floodplain areas. Typically, human settlement
patterns on the first and second terrace positions near
floodplains result in higher road density, lower stream
density, and gentle slopes that favor Culex species. Our
models do reflect high-risk conditions that result from the
combined effects of those variable states in numerous
areas adjacent to the floodplains.

Our results did not support the assertion that WNV is pre-
dominantly an urban problem, but indicated that WNV
may be a problem for rural areas as well. Nevertheless,
humans are mobile and no consideration was given to the
possibility that infections occurred outside a zip code of
residence. In a more specific study of individual cases, the
travel habits of WNV infected individuals could be ascer-
tained and the distance from home and travel frequency
used as a stratification tool to filter model inputs to those
human cases that occurred in close proximity to their
homes or workplaces.

In summary, this research indicated that the assessment of
WNV risk on a state level can be effectively performed
using widely available environmental data combined

Table 3: Summary of t-tests for dynamic precipitation minus evaporation in inches (P-E) variables.

P-E variable by season Mean for zip codes with T-test significance (P-value)

WNV bird occurrence No WNV bird occurrence

Summer 2002 -1.1492 -1.2772 .515
Fall 2002 4.3486 4.1149 .224
Summer 2003 1.1303 -0.8574 .001
Fall 2003 -1.182 0.0585 .080
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Table 4: Summary table; results comparison and validation.

Model Variables/weights Validation 
WNV data

Majority Risk Mean Risk Median Risk

0 1 # hc val. 0 1 # hc val. 0 1 # hc val.

difference % correct difference % correct difference % correct

Landscape -base Road den. – 0.4
Stream den. – 0.3
Slope % – 0.2
NDVI – 0.1

Human 
cases in 
2002 and 
2003

5.4
1.0

6.4 65
62.5

104 5.5
0.7

6.2 65
62.5

104 5.5
0.7

6.2 67
64.4

104

Summer 2002 Land. base – 0.7
P-E – 0.3

Human 
cases in 
Sum. 2002

5.3
1.0

6.3 47
61.8

76 5.4
0.8

6.2 47
61.8

76 5.4
0.9

6.3 46
60.5

76

Land. base – 0.8
P-E – 0.2

5.4
0.9

6.3 45
59.2

76 5.5
0.7

6.2 50
65.8

76 5.5
0.7

6.2 49
64.5

76

Land. base – 0.9
P-E – 0.1

5.4
0.8

6.2 46
60.5

76 5.5
0.6

6.1 48
63.2

76 5.5
0.7

6.2 50
65.8

76

Land. base – 1.0
P-E – 0.0

5.5
0.8

6.3 44
57.9

76 5.6
0.5

6.1 44
57.9

76 5.5
0.3

5.8 46
60.5

76

Fall 2002 Land. base – 0.7
P-E – 0.3

Human 
cases in Fall 
2002

5.5
0.4

5.9 20
60.6

33 5.5
0.3

5.8 16
48.5

33 5.5
0.3

5.8 16
48.5

33

Land. base – 0.8
P-E – 0.2

5.5
0.5

6.0 20
60.6

33 5.6
0.2

5.8 16
48.5

33 5.6
0.2

5.8 16
48.5

33

Land. base – 0.9
P-E – 0.1

5.6
0.5

6.1 18
54.5

33 5.6
0.3

5.9 15
45.5

33 5.6
0.3

5.9 15
45.5

33

Land. base – 1.0
P-E – 0.0

5.6
0.5

6.1 19
57.6

33 5.6
0.3

5.9 17
51.5

33 5.7
0.3

6.0 18
54.5

33

Summer 2003 Land. base – 0.7
P-E – 0.3

Human 
cases in 
Sum. 2003

5.4
1.4

6.8 20
66.7

30 5.4
1.3

6.7 21
70.0

30 5.5
1.2

6.7 21
70.0

30

Land. base – 0.8
P-E – 0.2

5.4
1.4

6.8 23
76.7

30 5.5
1.2

6.7 25
83.3

30 5.5
1.2

6.7 24
80.0

30

Land. base – 0.9
P-E – 0.1

5.5
1.4

6.8 22
73.3

30 5.5
1.2

6.7 25
83.3

30 5.6
1.2

6.8 25
83.3

30

Land. base – 1.0
P-E – 0.0

5.6
1.3

6.9 24
80.0

30 5.6
1.1

6.7 24
80.0

30 5.6
1.2

6.8 25
83.3

30

Fall 2003 Land. base – 0.7
P-E – 0.3

Human 
cases in Fall 
2003

5.6
1.0

6.6 16
59.3

27 5.7
0.7

6.4 16
59.3

27 5.7
0.8

6.5 16
59.3

27

Land. base – 0.8
P-E – 0.2

5.6
1.1

6.7 18
66.7

27 5.6
1.0

6.6 18
66.7

27 5.6
1.0

6.6 18
66.7

27

Land. base – 0.9
P-E – 0.1

5.5
1.4

6.9 24
88.9

27 5.6
1.1

6.7 23
85.2

27 5.6
1.2

6.8 23
85.2

27

Land. base – 1.0
P-E – 0.0

5.6
1.4

7.0 24
88.9

27 5.6
1.2

6.8 25
92.6

27 5.6
1.3

6.9 26
96.3

27

Average % correct for all 
models

66.8 61.3 66.9

The risk estimates by zip code were calculated using a zonal function. Majority, mean and median measures of risk were calculated and recorded for zip codes of WNV human occurrence (1) and zip codes 
of non-occurrence (0). Difference between the two categories of zip codes (0 versus 1) was determined and for all models. Estimated risk was higher for zip codes with at least one human case than for zip 
codes where human cases were not recorded. Modeling results were validated with human infection data (val.) for appropriate corresponding season. Number of human cases (#hc) in the high-risk category 
was determined. The high-risk category included zip codes of the combined top two risk classes (out of five) defined using quantile classification method. For each model percentage correct (% correct) was 
calculated to determine the measure of central tendency that works best for the validation. Examination of average % correct for all models indicated that the median (66.9%) and majority (66.8%) measures 
reflect the actual WNV risk better than the mean (61.3%).
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Summarization of risk across all seasons indicating areas environmentally prone to sustaining the WNVFigure 9
Summarization of risk across all seasons indicating areas environmentally prone to sustaining the WNV.
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with nonhuman surveillance information to support dis-
ease monitoring and prediction efforts. Our models were
constructed in a desktop computing environment and can
be easily implemented in an automated decision support
system that may help public officials to be better prepared
to combat this and other vector-borne diseases. Additive
modeling gives a landscape-based detailed risk assess-
ment at every cell location, which can be further summa-
rized to show relative risk within areas that have distinct
boundaries such as state parks, zip codes or recreation
areas. This information can help to better define mos-
quito control strategies and help regulatory agencies to
focus their prevention efforts. Finally, modeling disease
with GIS results in spatial depictions of the risk that can
be used as input to mosquito and bird sampling strategies
designed for detection of WNV in the environment.
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