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Béatrice Pesquet-Popescu, Member, IEEE, and Jean-Claude Belfiore, Member, IEEE

Abstract— A scalable video coder consisting of motion-
compensated temporal filtering coupled with structured vector
quantization plus a linear mapping of quantizer indices that
minimizes simultaneously source and channel distortions is pre-
sented. The linear index assignment takes the form of either
a direct, uncoded mapping or a coded mapping via Reed-
Muller codes. Experimental results compare the proposed system
to a similar scheme using unstructured vector quantization as
well as to a prominent scalable video coder protected by more
traditional convolutional codes. The proposed system consistently
outperforms the other two schemes by a significant margin for
very noisy channel conditions.

Index Terms— joint source-channel coding, scalable video cod-
ing

I. INTRODUCTION

Shannon’s separability theorem is often used to justify the
independent design of source- and channel-coding subsystems.
However, in real-time video systems, the separability principle
may not be applicable due to the high complexity for both
the source and channel coders potentially entailed by the
theorem. Consequently, there has been increasing interest
in joint source-channel coding (JSCC) to provide efficient
performance with complexity lower than tandem schemes.

Many prior JSCC techniques can be partitioned into two
main categories: 1) source-optimized channel coding, wherein
channel coding is optimized with respect to the source; and 2)
channel-optimized source coding, wherein source coding is op-
timized with respect to the channel. In source-optimized chan-
nel coding, a quantizer—most generally, a vector quantizer—
is designed for a noiseless channel. In the absence of explicit
channel coding, vector quantization (VQ) can be made robust
by applying a good index assignment (IA) to map quantization
indices to channel codewords so as to minimize the impact of
channel noise (e.g., [1]). On the other hand, when an explicit
channel coding is used, careful attention is paid to optimally
partition given resources between the source and channel coder
(e.g., [2–5]). In channel-optimized source coding, the VQ and
IA are simultaneously optimized for a specific channel such
that very efficient clean-channel performance is obtained while
providing robustness in the presence of noise (e.g., [6]).
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In both the source-optimized channel coding and channel-
optimized source coding categories of JSCC, the traditional
approach is to cascade the channel code after the source code,
such that the channel code adds redundancy to the transmission
to combat channel errors and effectively increases the end-
to-end transmission rate. An alternative category of JSCC,
which can be considered to be channel-constrained source
coding, was introduced in [7]. In such an approach, VQ is
trained for minimum quantization distortion under constraints
arising from the channel. The main result is that the channel
distortion of a binary symmetric channel (BSC) is minimized
if the source codebook can be expressed as a linear transform
[8], that is, if the IA labeling is linear. Such linear IA includes
direct mapping of VQ indices to channel codewords as well
as coded IA wherein the VQ indices are mapped through
a channel code. The use of the channel code in this latter
approach effectively constrains the VQ source codewords to
reside in the space of channel codewords. This marks a
substantial departure from the traditional use of channel coding
to add redundancy—and, consequently, increased transmission
rate—as is the case in schemes that concatenate source and
channel coding (e.g., [2–5]).

In [9], linear transforms constructed from lattice constella-
tions with “maximum component diversity” were used to build
structured VQ codebooks which minimized simultaneously the
source and channel distortions for Gaussian sources. In this
paper, we develop a JSCC scheme in the channel-constrained
source-coding category for the coding of video wherein the
source distribution is not Gaussian. Specifically, we describe a
scalable video-coding system constructed from t+2D motion-
compensated temporal filtering (MCTF) coupled with JSCC
using the structured VQ of [9]. The VQ indices are mapped
to channel codewords either directly in an uncoded form,
or through coded IA based on Reed-Muller codes, with the
encoder adaptively deciding between the coded and uncoded
IA on a subband-by-subband basis. Consequently, with coded
IA, the source codewords themselves are constrained to belong
to the channel code, and there is no rate increase due to the
incorporation of the channel code. We compare our proposed
coding scheme to a source-optimized channel-coding tech-
nique featuring unstructured VQ of MCTF coefficients coupled
with the IA mapping of [1], as well as to the more traditional
approach to error resilience consisting of concatenating a
source coder (the prominent MCTF-based coder MC-EZBC
[10]) with a channel coder (convolutional codes). We find that
the proposed JSCC system consistently outperforms the other
two schemes as the channel noise level increases.
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II. INDEX ASSIGNMENT FOR GAUSSIAN SOURCES

Let vector xxx be the input to a vector quantizer which
produces an n-bit binary codeword, the quantization index
of the vector. The source codebook can then be viewed as
a function of bbb =

[
b1 · · · bn

]T ∈ {+1,−1}n, where bbb
represents the IA of xxx. Under the assumption of a maxentropic
quantizer, the total distortion is D = Ds+Dc, where Ds is the
source distortion due to quantization, and Dc is the channel
distortion dependent on the IA.

In [8], the channel distortion of a BSC is proved to be
minimized by IA in the form of a linear labeling, while, in
[9], a linear labeling that minimizes simultaneously the source
and channel distortions is constructed. In the case of a zero-
mean Gaussian source, this linear labeling is constructed using
a subset of lattice constellations with “maximum component
diversity.” Specifically, let UUUn be an n × n generator matrix
of a maximum-component-diversity lattice constellation as
described in [11]. Its construction is based on number-field
theory, and it is expressed by the standard embeddings in RRRn
of the ideal ring of the totally real subfield of cyclotomic fields.
The rows and the columns of UUUn are denoted by Lin and
Cnj , respectively, where 1 ≤ i, j ≤ n. If J is some subset of
{1, . . . , n}, then Cnj(J) is the j th column of UUUn(J), which is
a matrix of only the rows of UUUn corresponding to the indices
in J . Using UUUn, one can linearly map BPSKn = {−1,+1}n
onto a new set UUUn ·BPSKn. Allowing n to increase while J
remains fixed, we get a codebook Sn(J) with codewords yyy(l),
yyy(l) =

∑n
j=1 b

(l)
j Cnj(J), where bbb(l) =

[
b
(l)
1 · · · b

(l)
n

]T
∈

BPSKn, and 1 ≤ l ≤ 2n. In order to obtain a family of
matrices UUUn such that Sn(J) is an asymptotically Gaussian
source dictionary that minimizes Ds as n→∞, UUUn must be
orthogonal with coefficients going uniformly to 0 as n → ∞
[9]. In this case, the linear mapping bbb ∈ BPSKn →

(
GGGd,nbbb ∈

Sn(J)
)
, where d× n matrix GGGd,n = UUUn(J), d = |J |, allows

the construction of a source dictionary that is asymptotically
Gaussian. Similar properties are achieved by selecting columns
of the matrix UUUn, and we shall denote the n × r matrices
constructed this way as GGG′n,r, where r ≤ n.

The above discussion assumes that the uncoded IA bbb is
transmitted directly on the channel. In the alternative case
that an error-correcting code is used, bbb ranges in mmm(ccc)
where ccc is one of the 2k possible binary codewords belong-
ing to the (n, k) linear code C. The function mmm(·) maps
ccc =

[
c1 · · · cn

]T onto mmm(ccc) =
[
m(c1) · · · m(cn)

]T ,
where m(0) = 1 and m(1) = −1. The codebook for this
coded case has codevectors yyy(l) given by yyy(l) = GGGd,nbbb

(l),
where bbb(l) = mmm(ccc(l)), ccc(l) ∈ C, and 1 ≤ l ≤ 2k.

III. CODING OF SPATIO-TEMPORAL SUBBANDS

We now apply the JSCC scheme described above to a
scalable video coder. The resulting system first applies t+2D
MCTF in the form of a motion-compensated temporal wavelet
transform applied to a group of frames (GOF) followed by
a spatial wavelet transform of the temporal subbands. Next,
an optimal bit-allocation procedure allocates rate among the
spatio-temporal subbands, after which the spatio-temporal
coefficients are vector quantized. Finally, a linear IA mapping

between the source codebook and the coded symbols sent on
the channel is applied to provide resilience to channel noise.

A. Index Assignment for non-Gaussian Sources
Because the coefficients of the t+ 2D MCTF subbands are

not Gaussian, the coding scheme of Sec. II cannot be applied
directly. However, the marginal distribution of the subband
coefficients has been shown to be well-modeled by a mixture
of two Gaussians [12]; thus, we classify vectors drawn from
the spatio-temporal subbands into two vector classes and apply
the IA approach of Sec. II to each class independently.

For vectors from the temporally lowpass (approximation)
frames, it was observed in [12] that classification according
to vector magnitude, such that the vectors are partitioned
into a low-variance and a high-variance class, results in
an approximately Gaussian distribution within each class.
Similarly, vectors from the temporal highpass (detail) frames
are classified into two classes using the stochastic model of
spatio-temporal dependencies introduced in [12]. This permits
accurate classification based on only the coefficients already
decoded, without requiring transmission of side information.
Following this model, we assume that the conditional prob-
ability of a coefficient is Gaussian with variance depending
on a set of its spatio-temporal neighbors; i.e., the conditional
probability of coefficient x is f(x|σ2

x) = 1√
2πσx

exp
(
− x2

2σ2
x

)
,

where the variance is σ2
x =

∑
i wi |pi(x)|2 + α, such that

pi(x) are coefficients neighboring x in the same spatio-
temporal subband, wi are weight parameters, and α is an
offset parameter. The spatio-temporal neighborhood is a set of
causal coefficients that will have already been received by the
decoder when the current coefficient is decoded. Estimation
of the parameters (wi and α) of this model is done as in [12].

B. Quantization and Bit Allocation
For each vector class described above, we design a VQ

codebook by minimizing cost γ = E
[
minl

∥∥xxx−βGGGd,nbbb(l)
∥∥2],

where, in the case that the IA is uncoded, bbb(l) ranges over
the set of 2n possible codewords of a BPSKn, and, in the
case that the IA includes an error-correcting code, bbb(l) ranges
over the set of 2k possible codewords of an (n, k) code
C. β is a parameter which scales the lattice constellation
GGGd,n to the source dynamics. In order to find β, as well
as the codebook with vectors yyy(l) = βGGGd,nbbb

(l), an iterative
optimization algorithm (similar to that of shape-gain VQ) is
used. A similar optimization is applied when using the matrix
GGG′n,r for VQ; in this case, an (r, k) code C ′ is used for the
coded IA.

The channel distortion Dc is minimized due to the linearity
of the IA labeling, and its value is fixed for a given channel-
noise variance. Consequently, an iterative bit-allocation algo-
rithm is applied to allocate VQ rate among the spatio-temporal
subbands in an optimal fashion. This bit-allocation algorithm,
which originates in [13], takes into account a nonnegativity
constraint on the rate allocated to each subband. The algorithm
indicates the size of the GGGd,n or GGG′r,n matrix which mini-
mizes the end-to-end distortion. The choices of GGGd,n or GGG′r,n
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are, however, limited in practice by computational-complexity
issues and dependences between the spatio-temporal coeffi-
cients. That is, it is known that the spatio-temporal coefficients
exhibit strong correlation with their spatial or spatio-temporal
neighbors; thus, in order to exploit these relationships, the
dimensions d in GGGd,n or n in GGG′n,r should be a power of
4. However, in order to attain high or low coding rates, we
permit these values to be 2 if need be. In addition to keep the
complexity low, we limit the dimensions n in GGGd,n and r in
GGG′n,r to be no greater than 16.

C. Partially Coded Index Assignment
We initially applied the VQ and IA described above in an

uncoded fashion, i.e., without the use of any error-correcting
codes in the IA mapping. However, when transmitting over
a Gaussian channel with low SNR, we remarked that for
some subbands, especially those with high energy, the total
distortion D was very high compared to the source distortion
Ds obtained when the channel was noiseless. We conclude
that, in this situation, the channel distortion Dc must be
dominant. In order to improve performance, we replace the
uncoded IA with coded IA incorporating an error-correcting
code for these subbands. We choose Reed-Muller codes due
to their symmetry, their widespread use in lattice construction,
and their error-correcting capability.

For coded IA, we restrict the mapping space to be the space
of the binary vectors belonging to the Reed-Muller code. We
additionally constrain the source-coding rate to be the same
rate as dictated by the bit-allocation algorithm in the uncoded
case. We then choose the (η, k) Reed-Muller code in light
of the trade-off between the following considerations: 1) the
error-correction capability of the code; 2) the blocklength η
of the code must be η = n of GGGd,n, or η = r of GGG′n,r, as
appropriate, in order that the bitrate does not increase; and 3)
the dimension of the code k should be close to n or r so that
the number of 2k possible codewords is close to the 2n or 2r

possible codewords of the uncoded case, in order to minimize
the increase to the source distortion. In this way, the end-to-end
distortion decreases without changing either the source-coding
rate of the uncoded case or the total bitrate.

The encoding algorithm consists of the following steps. In
each subband, we calculate Ds in a noiseless environment
as well as the end-to-end distortion D for the given noisy
channel as it would be obtained with an uncoded IA. If the
difference between D and Ds is high (which means that
Dc is significant), we restrict the IA to be codewords of a
Reed-Muller code selected with the considerations discussed
above. Otherwise, the IA maps directly to uncoded codewords.
At the decoder side, soft-decision decoding via the Viterbi
algorithm with the BCJR trellis [14] is applied to the coded
codewords, while hard-decision decoding is applied to the
uncoded codewords. We note that the encoder sends a small
amount of side information to the decoder (β and the sizes of
GGGd,n and GGG′n,r for each vector class for each subband, as well
as the coded/uncoded state for each subband); it is assumed
that this side information is highly protected so as to arrive at
the decoder uncorrupted.
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Fig. 1. (a) Foreman, channel SNRs of ∞ (solid lines) and 6.75 dB (dashed
lines); (b) Foreman, channel SNRs of 4.33 dB (solid lines) and 3.00 dB
(dashed lines); (c) Hall Monitor, channel SNRs of∞ (solid lines) and 6.75 dB
(dashed lines); (d) Hall Monitor, channel SNRs of 4.33 dB (solid lines) and
3.00 dB (dashed lines).

IV. SIMULATION RESULTS

To experimentally evaluate the effectiveness of the system
described in the previous section, we perform simulations
using CIF test sequences at 30 fps. The video-coding system
uses a Haar MCTF decomposition applied on GOFs of 16
frames, with 4 temporal and 2 spatial resolution levels. The
spatial transform uses the popular biorthogonal 9/7 filters.

As we remarked in Sec. III-C, a Reed-Muller code is
incorporated into the IA for subbands of high energy. Our bit-
allocation algorithm dictates that these high-energy subbands
are coded using GGGd,16 or GGG′n,16. Thus, in consideration of
the three trade-offs discussed in Sec. III-C, we choose the
RM{2, 4} with η = 16 and k = 11. However, compared to the
uncoded case, we expect the source distortion to increase, as
now the dimension of the mapping space has decreased to 211

possible codewords, instead of 216 as in the uncoded case. On
the other hand, the end-to-end distortion of the entire scheme
in a noisy environment will decrease significantly compared
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to the uncoded case, and the total bitrate remains the same.
We compare our proposed scheme (which we denote as

“JSC+RM”) to two other video coders using the same scalable
MCTF transform structure. The first technique belongs to the
class of source-optimized channel coding. In this scheme, a
VQ source coder is designed to minimize source distortion
for the noiseless channel, while a good, albeit suboptimal, IA
is applied to increase the error resiliency of the quantizer.
For the VQ source coder, we apply the locally optimal
generalized Lloyd algorithm (GLA) to produce unstructured
VQ codebooks with locally minimal source distortion Ds. The
GLA VQ codebooks are of the same dimensions as dictated
by the bit-allocation algorithm of our proposed scheme.We
then follow with the Minimax Cover Algorithm (MCA) [1],
which is an IA using a minimax error criterion that is designed
against worst-case performance without sacrificing average
performance. We refer to this coder as “MCA.”

The second video coder to which we compare corresponds
to an implementation of MCTF concatenated with traditional
error-control coding. We employ the prominent MC-EZBC
[10] coder, and, to provide error resilience, we packetize the
MC-EZBC bitstream while applying rate punctured convo-
lutional (RPC) codes to the resulting packets. Specifically,
each packet contains the information corresponding to a sin-
gle spatial resolution level from a single temporal subband
frame. Hence, the packets have unequal length and are coded
unequally by RPC codes. If the decoder fails to decode a
received packet, the packet is dropped. The RPC codes have
Rp = 2/3, 3/4, and 7/8 with memory m = 6 and mother code
R = 1/2 [15]. The most important information is protected
by 2/3 codes, the medium spatio-temporal frequencies by 3/4
codes, and the finest details by 7/8 punctured codes. We refer
to this second coder as “MC-EZBC.”

Fig. 1 presents the results obtained using the three dif-
ferent coding schemes for the “hall-monitor” and “foreman”
sequences at different bitrates over a Gaussian channel with
four different channel-noise levels. Note that, for the noise-
less channel, the IA is entirely uncoded for our JSC+RM
scheme. In Fig. 1 we observe that both MCA and MC-EZBC
yield performance superior to JSC+RM when the channel
is noiseless. This is as expected, as these two algorithms
are designed for noiseless channels. In particular, we expect
MCA to outperform JSC+RM due to the unstructured nature
of the codebooks generated by GLA, whereas the JSC+RM
codebooks are highly structured. On the other hand, when the
channel becomes very noisy (e.g., channel SNRs of 4.33 dB
and 3 dB), the performances of MCA and MC-EZBC drop
dramatically while JSC+RM remains quite close to its noise-
less performance. Indeed, JSC+RM consistently outperforms
both MCA and MC-EZBC for the very noisy channel.

V. CONCLUSIONS

In this paper, we presented an approach to the JSC coding
of scalable MCTF video. The proposed system is based on
structured VQ coupled with linear IA in the form of uncoded
IA, or coded IA via Reed-Muller codes. We compared the
performance of the proposed system to that of a source-
optimized channel coding using unstructured VQ codebooks

without an explicit channel coder, as well as to that of
the prominent MCTF-based MC-EZBC coder protected un-
equally with RPC codes, in the more traditional paradigm
of concatenated source and channel codes. As the channel
noise increases, the proposed coding system retains end-to-end
distortion performance close to that of the noiseless channel
as well as consistently outperforms the other two schemes for
very low channel SNR.

As a final observation, we note that, at the encoder, the
complexity of our scheme is similar to that of the unstructured-
VQ coder, except we avoid the IA post processing of [1] in the
creation of VQ codebooks. No additional encoder complexity
occurs due to the use of coded IA, since the VQ source
codewords belong to the space of channel codewords, unlike
concatenated source-channel schemes that require subsequent
channel-coding processing. On the other hand, at the decoder,
the complexity of our proposed scheme is comparable to that
of concatenated schemes as Viterbi decoding is required in
both cases.
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