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1. Introduction
Image watermarking is a technique for labeling digital images by embedding electronic stamps or so-called
watermarks into the images for the purpose of copyright protection. Due to the explosion in use of the digital
media, watermarking has been attracting significant interest from both academic and industry recently. In
order to be effective, a watermark should exhibit a number of desirable characteristics [1, 2, 3, 4].

• Unobtrusiveness: The watermark should be perceptually invisible and should not degrade the quality
of the image content.

• Robustness: The watermark must be robust to transformations including common signal processings,
common geometric distortions and subterfuge attacks.

• Blindness: The watermark should not require the original nonwatermarked image for watermark de-
tection.

• Unambiguousness: Retrieval of the embedded watermark should unambiguously identify the owner-
ship and distribution of data.

A number of techniques have been developed for watermarking. A widely used technique is spread-
spectrum watermarking which embed white Gaussian noise onto transform coefficients [1]. The watermark
is detected by computing a correlation between the watermarked coefficients and the watermark sequence
which is compared to a properly selected threshold. The DWT is an appealing transform for spread-spectrum
watermarking because its space-frequency tiling exhibits a strong similarity to the way the human visual
system (HVS) processes natural images [4]. Therefore, watermarking techniques in the wavelet domain can
largely exploit the HVS characteristics and effectively hide a robust watermark.

Unlike the DWT, the redundant discrete wavelet transform (RDWT) gives an overcomplete represen-
tation of the input sequence and functions as a better approximation to the continuous wavelet transform.
The RDWT is shift invariant and its redundancy introduces an overcomplete frame expansion. It has been
proved that frame expansions add numerical robustness in case of adding white noise [5, 6] such in the case
of quantization. This property makes RDWT-based signal processing tends to be more robust than DWT.
It is well known that RDWT is very successful in noise reduction and feature detection, and prior work
has proposed using the RDWT for image watermarking [7]. Initially, one might think that, since frame
expansions such as the RDWT offer increased robustness to added noise, such overcomplete expansions
outperform traditional orthonormal expansion in the watermarking problem. In this report, we offer analysis
that contradicts this intuition. Specifically, we present analysis that shows that, although watermarking coef-
ficients in a tight-frame expansion does produce less image distortion for the same watermarking energy, the
correlation-detector performance of tight-frame based watermarking is identical to that obtained by using
an orthonormal expansion.
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2. RDWT & Frame
2.1 RDWT

The RDWT removes the decimation operators from DWT filter banks. To retain the multiresolution
characteristic, the wavelet filters must be adjusted accordingly at each scale. Specifically,

hJ1 [k] = h[k]

where J1 is the start scale, hJ1 [k] is the RDWT scaling filter at scale J1. h[k] is a normal DWT scaling filter.
Filters at later scales are upsampled versions from the filter coefficients at the upper stage,

hj [k] = hj+1[k] ↑ 2

and similar definitions is applied to gj [k], the wavelet filter of the orthonormal DWT.
The RDWT multiresolution analysis can be implemented via the filter bank equations:

Analysis: cj [k] = h̃j+1[−k] ∗ cj+1[k] (1)

dj [k] = g̃j+1[−k] ∗ dj+1[k] (2)

Synthesis: cj+1[k] =
1

2

[
hj+1[k] ∗ cj [k] + gj+1[k] ∗ dj [k]

]
(3)

The lack of downsampling in the RDWT analysis yields a redundant representation of the input se-
quence; specifically, two valid descriptions of the coefficients exist after one stage of RDWT analysis.

2.2 Frames
DEFINITION. [5] A family of functions (ψi)i∈J in a Hilbert spaceH is called a frame if there exist A > 0,
and B <∞ so that, for all f inH,

A‖f‖2 ≤
∑

i∈J
| < ψi, f > |2 ≤ B‖f‖2 (4)

A and B are called the frame bounds. The dual frame (ψ̃i) of (ψi) is an expansion set in Hilbert space H
and for all f inH,

1

B
‖f‖2 ≤

∑

i

| < ψ̃i, f > |2 ≤
1

A
‖f‖2 (5)

Any function f ∈ H can be expanded as

f =
∑

i

αiψ̃i =
∑

i

< ψi, f > ψ̃i (6)

=
∑

i

βiψi =
∑

i

< ψ̃i, f > ψi (7)

If two frame bounds are equal, A = B, the frame is called a tight frame. In a tight frame, for all f ∈ H,
∑

i∈J
| < ψi, f > |2 = A‖f‖2 (8)

ψ̃i =
1

A
ψi (9)

f =
1

A

∑

i

〈ψi, f〉ψi (10)

In this case, A > 1, and A gives the “redundancy ratio”, a measure of the degree of overcompleteness of the
expansion.
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2.3 RDWT and frame expansion
Theorem. RDWT is a frame expansion with frame bounds A = 2 and B = 2J , where J is the number of
levels in the transform. Thus, for one level, the RDWT is a tight frame.
Proof:

One−level RDWT Analysis

c′j[0] c′j[1]

d′j[0] d′j[1]

cj+1[1]cj+1[0] cj+1[2] cj+1[3]

c′′j [1]c′′j [0]

d′′j [1]d′′j [0]

Figure 1: One scale of RDWT decomposition.

As shown in Fig. 1, for the lowpass coefficients cj , it is composed with two parts, c′j and c′′j , each of
them is a valid DWT lowpass description of cj+1. It is a similar case for the highpass coefficients dj . Thus,
Parseval’s theory holds for each of the descriptions:

∑
‖c′j‖2 +

∑
‖d′j‖2 =

∑
‖cj+1‖2

∑
‖c′′j ‖2 +

∑
‖d′′j ‖2 =

∑
‖cj+1‖2

Thus, for the RDWT coefficients all together, we have

∑
‖cj‖2 +

∑
‖dj‖2 = 2

∑
‖cj+1‖2 (11)

Therefore, one-level RDWT decomposition is a tight frame with A = 2.
For decomposition level J > 1, suppose the decomposition starts at scale J1. We have then

∑
‖cJ1‖2 =

1

2
(
∑
‖cJ1−1‖2 +

∑
‖dJ1−1‖2)

=
1

22

∑
‖cJ1−2‖2 +

1

22

∑
‖dJ1−2‖2 +

1

2

∑
‖dJ1−1‖2

=
1

2J

∑
‖cJ1−J‖2 +

J∑

j=1

1

2j

∑
‖dJ1−j‖2 (12)

While, the energy for the RDWT coefficients is:

E =
∑
‖cJ1−J‖2 +

J∑

j=1

∑
‖dJ1−j‖2 (13)
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So that,

2J
∑
‖cJ1‖2 − E =

J−1∑

j=1

(2J−j − 1)
∑
‖dJ1−j‖2

(since j = 1 . . . J − 1, we have 2J−j ≥ 2, so that)

2J
∑
‖cJ1‖2 − E ≥ 0

=⇒ E ≤ 2J
∑
‖cJ1‖2 (14)

On the other hand,

E − 2
∑
‖cJ1‖2 = (1− 21−J)

∑
‖cJ1−J‖2 +

J∑

j=2

(1− 21−j)
∑
‖dJ1−j‖2

(since J > 1 and j = 2 . . . J , we have 21−j ≤ 1, so that)

E − 2
∑
‖cJ1‖2 ≥ 0

=⇒ E ≥ 2
∑
‖cJ1‖2 (15)

The bounds of A = 2 and B = 2J are the tightest bounds since we can find sequences that meet the
bounds. Specifically, for a constant sequence x1[n] = 1, only the lowpass coefficients are nonzero and all
highpass subbands are zero valued. That is,

∑ ‖cJ1−J‖2 6= 0 but
∑ ‖dJ1−j‖2 = 0, for j = 1 . . . J .

2J
∑
‖cJ1‖2 − E =

J−1∑

j=1

(2J−j − 1)
∑
‖dJ1−j‖2 = 0

∴ E = 2J
∑
‖cJ1‖2 (16)

For an oscillatory sequence x2[n] = (−1)n, only the finest detail coefficients would be nonzero. That is,∑ ‖cJ1−J‖2 = 0 and
∑ ‖dJ1−j‖2 = 0, for j = 2 . . . J .

E − 2
∑
‖cJ1‖2 = (1− 21−J)

∑
‖cJ1−J‖2 +

J∑

j=2

(1− 21−j)
∑
‖dJ1−j‖2 = 0

∴ E = 2
∑
‖cJ1‖2 (17)

Therefore, for decomposition level J > 1, the energy of the decomposition coefficients are well
bounded. Thus, the RDWT is a frame expansion according to the definition.

3. Robustness of Adding White Noise
We are to compare the robustness of three different transforms, i.e. orthonormal basis, tight frame and frame
basis, after adding white Gaussian noise in the corresponding transform domains. Suppose the additive noise
is a zero mean, variance ε2 Gaussian noise, the robustness is measured as the mean square error (MSE) of
the reconstructed signal with the original signal.

MSE = E[‖f − f̂‖2] = E[< f − f̂ , f − f̂ >]

= E[< f, f >]− 2E[< f, f̂ >] + E[< f̂, f̂ >]

In this analysis, f is the original signal, f̂ is the watermarked signal, and the MSE is the distortion produced
by watermarking f with watermark energy equal to ε2.

4
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3.1 Orthonormal basis

f =
N∑

i=1

αiψi =
N∑

i=1

〈ψi, f〉ψi

f̂ =
N∑

i=1

(αi + ni)ψi

where the Gaussian noise is ni ∼ (0, ε2).
The error signal

e = f̂ − f =
N∑

i=1

niψi

So that,

MSE = E‖e‖2 = E[
N∑

i=1

n2
i ]

=

N∑

i=1

E[n2
i ] = Nε2 (18)

3.2 Tight frame

f =
1

A

AN∑

i=1

〈ψi, f〉ψi =
1

A

AN∑

i=1

αiψi

f̂ =
1

A

AN∑

i=1

(αi + ni)ψi

Since
MSE = E[< f, f >]− 2E[< f, f̂ >] + E[< f̂, f̂ >]

(1)

E[< f, f >] = E



〈

1

A

AN∑

i=1

αiψi,
1

A

AN∑

j=1

αjψj

〉


=
1

A2

∑

i

∑

j

E[αiαj ] 〈ψi, ψj〉

(2)

E[< f, f̂ >] = E



〈

1

A

AN∑

i=1

αiψi,
1

A

AN∑

j=1

(αj + nj)ψj

〉


=
1

A2

∑

i

∑

j

E[αiαj ] 〈ψi, ψj〉+
1

A2

∑

i

∑

j

E[αinj ] 〈ψi, ψj〉

=
1

A2

∑

i

∑

j

E[αiαj ] 〈ψi, ψj〉

5

Technical Report MSSU-COE-ERC-01-18, Engineering Research Center, Mississippi State University, December 2001



(3)

E[< f̂, f̂ >] = E



〈

1

A

AN∑

i=1

(αi + ni)ψi,
1

A

AN∑

j=1

(αj + nj)ψj

〉


=
1

A2

∑

i

∑

j

E[αiαj ] 〈ψi, ψj〉+ 0 +
1

A2

∑

i

∑

j

E[ninj ] 〈ψi, ψj〉

Combining the three components:

MSE = E[‖f − f̂‖2] = E[< f, f >]− 2E[< f, f̂ >] + E[< f̂, f̂ >]

=
1

A2

∑

i

∑

j

E[ninj ] 〈ψi, ψj〉

=
1

A2

∑

i

E[n2
i ] 〈ψi, ψi〉

=
1

A2

AN∑

i=1

ε2 =
Nε2

A
(19)

Note that, since A > 1, Nε
2

A < Nε2, and watermarking in the tight frame yields less distortion to f than
does an orthonormal basis.

3.3 Frame expansion

f =
M∑

i=1

αiψ̃i =
M∑

i=1

< ψi, f > ψ̃i

f̂ =
M∑

i=1

(αi + ni)ψ̃i

MSE = E[< f, f >]− 2E[< f, f̂ >] + E[< f̂, f̂ >]

(1)

E[< f, f >] = E[<
∑

i

αiψ̃i,
∑

j

αjψ̃j >]

=
∑

i

∑

j

E[αiαj ] < ψ̃i, ψ̃j >

(2)

E[< f, f̂ >] = E[<
∑

i

αiψ̃i,
∑

j

(αj + nj)ψ̃j >]

=
∑

i

∑

j

E[αiαj ] < ψ̃i, ψ̃j > +
∑

i

∑

j

E[αinj ] < ψ̃i, ψ̃j >

=
∑

i

∑

j

E[αiαj ] < ψ̃i, ψ̃j >

6
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(3)

E[< f̂, f̂ >] = E[<
∑

i

(αi + ni)ψ̃i,
∑

j

(αj + nj)ψ̃j >]

=
∑

i

∑

j

E[αiαj ] < ψ̃i, ψ̃j > +
∑

i

∑

j

E[ninj ] < ψ̃i, ψ̃j >

=
∑

i

∑

j

E[αiαj ] < ψ̃i, ψ̃j > +
∑

i

E[n2
i ] < ψ̃i, ψ̃i >

Combining all the components:

MSE = E[< f, f >]− 2E[< f, f̂ >] + E[< f̂, f̂ >]

=
∑

i

E[n2
i ] < ψ̃i, ψ̃i >

= ε2
∑

i

‖ψ̃i‖2 (20)

Theorem. As in the literature of [6], but we derived in a different way. For frame expansion,

M

B2
≤
∑

k

‖ψ̃k‖2 ≤
M

A2
(21)

Proof: Substitute f = ψk into inequalities Eq. 5 and substitute f = ψ̃k into inequalities Eq. 4, we have:

1

B
‖ψk‖2 ≤

∑

i

| < ψ̃i, ψk > |2 ≤
1

A
‖ψk‖2

A‖ψ̃k‖2 ≤
∑

i

| < ψi, ψ̃k > |2 ≤ B‖ψ̃k‖2

Because for each k, we have
∑

i |
〈
ψ̃i, ψk

〉
|2 and

∑
i |
〈
ψi, ψ̃k

〉
|2 be positive, we have correspond-

ingly:
∑

k

1

B
‖ψk‖2 ≤

∑

k

∑

i

| < ψ̃i, ψk > |2 ≤
∑

k

1

A
‖ψk‖2

∑

k

A‖ψ̃k‖2 ≤
∑

k

∑

i

| < ψi, ψ̃k > |2 ≤
∑

k

B‖ψ̃k‖2

Since the dimension of the frame basis ψ is same with the dimension of the dual frame basis ψ̃, equals
to M , it is obvious that:

M∑

k=1

M∑

i=1

| < ψ̃i, ψk > |2 =

M∑

k=1

M∑

i=1

| < ψi, ψ̃k > |2 = T

Thus T must satisfy the two inequalities simultaneously

M∑

k=1

1

B
‖ψk‖2 ≤ T ≤

M∑

k=1

1

A
‖ψk‖2

M∑

k=1

A‖ψ̃k‖2 ≤ T ≤
M∑

k=1

B‖ψ̃k‖2

7
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This is only possible if

M∑

k=1

1

A
‖ψk‖2 ≥

M∑

k=1

A‖ψ̃k‖2 (22)

M∑

k=1

B‖ψ̃k‖2 ≥
M∑

k=1

1

B
‖ψk‖2 (23)

Since frame ψk are normalized, ‖ψk‖2 = 1, we have Eq. 22

1

A

M∑

k=1

1 =
M∑

k=1

1

A
‖ψk‖2 ≥

M∑

k=1

A‖ψ̃k‖2

=⇒
M∑

k=1

|ψ̃k‖2 ≤
M

A2

Similarly, Eq. 23

M∑

k=1

B‖ψ̃k‖2 ≥
M∑

k=1

1

B
‖ψk‖2 = frac1B

M∑

k=1

1

=⇒
M∑

k=1

|ψ̃k‖2 ≥
M

B2

Therefore, the bounds for the
∑

k ‖ψ̃k‖2 are established.

M

B2
≤
∑

k

‖ψ̃k‖2 ≤
M

A2

So that,

MSE = E[‖f − f̂‖2] = ε2
∑

i

‖ψ̃i‖2

=⇒ Mε2

B2
≤MSE ≤ Mε2

A2

Note that, since the redundancy of r = M
N is between the frame bounds A and B(B > 1), we can

guarantee the lower bound of the MSE in the frame expansion case Mε2

B2 = rNε2

B2 be smaller than the
distortion in the orthonormal basis case Nε2.

4. Tight Frame and Watermarking
4.1 Watermarking

In the spread-spectrum watermarking problem, the signal is transformed using an expansion basis,

f =
∑

i

αiψi

8
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and the watermark sequence, a white Gaussian noise, ni, is added to the coefficients in the transform domain,
to form the watermarked image.

f ′ =
∑

i

α′iψi =
∑

i

(αi + εni)ψi

where ni is a zero-mean, unit-variance white Gaussian noise, and ε is a parameter that controls the watermark
strength.

The watermark can be detected assuming the watermark random sequence is known exactly. This is done
by performing the forward transform on the watermarked signal, and then running the correlation operation
on the coefficients,

ρ =
∑

i

α̂ini

where α̂i are the expansion coefficients of the watermarked image f’.

α̂i =
〈
ψ̃i, f

′
〉

For watermark detection, the correlation is compared to a threshold to decide the presence of the watermark.
An optimal threshold can be set to minimize the probability of missing the presence of the watermark error
to a given false-detection error according to the Neyman-Pearson criterion [4].

Below, we compare the watermark performance of two procedures: using an orthonormal basis and
using a tight-frame expansion. We ensure these two watermark procedures achieve the same MSE and the
same false-alarm error PF , and the performance is measured by the minimum missed-detection error, PM ,
as obtained with the Neyman-Pearson procedure.

Three hypothesis cases are possible for the watermark problem [4].

Case A: image is not watermarked.

Case B: image is watermarked with a random sequence other than the detection watermark, but is using a
same watermarking approach.

Case C: image is watermarked exactly with the detection watermark.

However, we will not do a multiple-hypothesis testing. Instead we will do two binary hypothesis testings,
on case A v.s. case C and case B v.s. case C respectively.

4.2 Neyman Pearson test[8]
Neyman-Pearson test is also called the most powerful (MP) test. The decision rule is obtained by mini-

mizing the missing error PM subject to the constraint on the false alarm error PF , PF = α. The objective
function is constructed based on the Lagrange multiplier method.

J = PM + λ(PF − α)

Suppose the decision rule is

ρ
H1

≷
H0

Tρ

We derive the Neyman Pearson test on two binary hypothesis problems.

9
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4.2.1 No watermarking vs. correct watermarking

According to [4], modeling the correlation ρ as a normally distributed noise is realistic and fit the central
limit theorem.

H0 : Case A P (ρ|H0) = 1√
2πσρA

e
− ρ2

2σ2
ρA

H1 : Case C P (ρ|H1) = 1√
2πσρC

e
− (ρ−µρC )2

2σ2
ρC

False Alarm Error:

PF = P (D1|H0) =

∫ ∞

Tρ

P (ρ|H0)dρ

=

∫ ∞

Tρ

1√
2πσρA

e
− ρ2

2σ2
ρA dρ

= Q(
Tρ
σρA

)

=
1

2
erfc(

Tρ√
2σρA

) (24)

Missing Error:

PM = P (D0|H1) =

∫ Tρ

−∞
P (ρ|H1)dρ

=

∫ Tρ

−∞

1√
2πσρC

e
− (ρ−µρC )2

2σ2
ρC dρ

= G(
Tρ − µρC
σρC

)

= 1−Q(
Tρ − µρC
σρC

)

=





1
2 + 1

2 erf(
Tρ−µρC√

2σρC
) Tρ ≥ µρC

1
2 erfc(

µρC−Tρ√
2σρC

) Tρ < µρC
(25)

4.2.2 Watermarking Discrimination

H0 : Case B P (ρ|H0) = 1√
2πσρB

e
− ρ2

2σ2
ρB

H1 : Case C P (ρ|H1) = 1√
2πσρC

e
− (ρ−µρC )2

2σ2
ρC

False Alarm Error:

PF = P (D1|H0) =
1

2
erfc(

Tρ√
2σρB

) (26)

Missing Error:

PM = P (D0|H1) =





1
2 + 1

2 erf(
Tρ−µρC√

2σρC
) Tρ ≥ µρC

1
2 erfc(

µρC−Tρ√
2σρC

) Tρ < µρC
(27)

10

Technical Report MSSU-COE-ERC-01-18, Engineering Research Center, Mississippi State University, December 2001



4.3 Correlations
In order to obtain the Neyman-Pearson test for each watermarking procedure, the probability distribu-

tions of the watermark correlation under each hypothesis must be obtained first. The correlation distribution
is modeled as a Gaussian noise.

4.3.1 Orthonormal basis

Case A no watermark

ρ =

N∑

i=1

αini

µρA = E[ρ] = 0 (28)

σ2
ρA = E[ρ− µρA]2 = E[ρ2]

= E[
∑

i

αini]
2

= E[
∑

i

α2
in

2
i ] + E[

∑

i,j,i6=j
αiαjninj ]

=
∑

i

α2
iE[n2

i ] + 0

=
N∑

i=1

α2
i = ‖f‖2 (29)

Case B watermarked with another random sequence

ρ =
N∑

i=1

(αi + εmmi)ni

µρB = E[ρ] =
∑

i

E[αini] +
∑

i

E[εmmini]

= 0 (30)

σ2
ρB = E[ρ− µρB]2 = E[ρ2]

= E[
N∑

i=1

(αi + εmmi)ni]
2

= E[
∑

i

(αi + εmmi)
2n2

i ] + E[
∑

i,j,i6=j
(αi + εmmi)ni · (αj + εmmj)nj ]

=
∑

i

E[α2
i + ε2mm

2
i + 2εmmiαi]E[n2

i ] + 0

=
N∑

i=1

α2
i +

N∑

i=1

ε2m

= ‖f‖2 +Nε2m = ‖f‖2 +Nε2 (31)
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Case C watermarked with the correct watermark

ρ =
N∑

i=1

(αi + εni)ni

µρC = E[ρ] = ε ·N (32)

σ2
ρC = E[ρ− µρC ]2 = E[ρ2]− µ2

ρC

= E[
N∑

i=1

(αi + εni)ni]
2 − ε2N2

= E[
∑

i

(αini + εn2
i )

2] + E[
∑

i,j,i6=j
(αini + εn2

i ) · (αjnj + εn2
j )]− ε2N2

=
∑

i

E[α2
in

2
i + ε2n4

i + 2εαin
3
i ]

+ E[
∑

i,j,i6=j
(αiniαjnj + εαjnjn

2
i + εαinin

2
j + ε2n2

in
2
j )]− ε2N2

=
∑

i

α2
iE[n2

i ] +
∑

i

ε2E[n4
i ] +

∑

i

2εαiE[n3
i ] +

∑

i,j,i6=j
ε2E[n2

i ]E[n2
j ]− ε2N2

Since ni is zero mean, unit variance white Gaussian noise, we have:

E[n2
i ] = 1 E[n3

i ] = 0 E[n4
i ] = 3

∴

σ2
ρC =

N∑

i=1

α2
i + 3Nε2 + ε2(N2 −N)− ε2N2

= ‖f‖2 + 2Nε2 (33)
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4.3.2 Tight frame

Case A no watermark

ρ =
AN∑

i=1

αini

µρA = E[ρ] = 0 (34)

σ2
ρA = E[ρ− µρA]2 = E[ρ2]

= E[
AN∑

i=1

αini]
2

=
∑

i

α2
iE[n2

i ]

=
AN∑

i=1

α2
i = A‖f‖2 (35)

Case B watermarked with another random sequence
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ρ =
AN∑

i=1

α̂ini

=
∑

i

〈
ψi, f

′〉ni =
∑

i

〈
ψi,

1

A

∑

j

(αj + εmmj)ψj

〉
ni

=
1

A

∑

i

[
∑

j

(αj + εmmj) 〈ψi, ψj〉]ni

=
1

A

∑

i

∑

j

(αj + εmmj)ni 〈ψi, ψj〉

µρB = E[ρ] = 0 (36)

σ2
ρB = E[ρ− µρB]2 = E[ρ2]

= E[
1

A

∑

i

∑

j

(αj + εmmj)ni 〈ψi, ψj〉]2

=
1

A2

[
E[
∑

i

∑

j

αjni 〈ψi, ψj〉]2 + E[
∑

i

∑

j

εmmjni 〈ψi, ψj〉]2

+ 2E[
∑

i

∑

j

αjni 〈ψi, ψj〉 ·
∑

k

∑

l

εmmlnk 〈ψk, ψl〉]
]

=
1

A2
E[
∑

i

∑

j

αjni 〈ψi, ψj〉]2 +
1

A2
E[
∑

i

∑

j

εmmjni 〈ψi, ψj〉]2

=
1

A2

∑

i

E[n2
i ][
∑

j

αj 〈ψi, ψj〉]2 +
1

A2

∑

i

∑

j

ε2mE[m2
jn

2
i ] 〈ψi, ψj〉2

=
1

A2

AN∑

i=1

[
∑

j

αj 〈ψi, ψj〉]2 +
ε2m
A2

AN∑

i=1

AN∑

j=1

〈ψi, ψj〉2

Since for the tight frame, we have:

f =
1

A

∑

j

〈ψj , f〉ψj =
1

A

∑

j

αjψj

So that,

AN∑

i=1

[
∑

j

αj 〈ψi, ψj〉]2 =
AN∑

i=1

〈ψi, Af〉2

=

AN∑

i=1

A2 〈ψi, f〉2

= A2
AN∑

i=1

α2
i (37)

And also because tight frame has the property of:
∑

i

| 〈ψi, f〉 |2 = A‖f‖2
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Then we have the second item of the expression:

AN∑

i=1

AN∑

j=1

〈ψi, ψj〉2 =
AN∑

i=1

A‖ψi‖2

=

AN∑

i=1

A = A2N

∴

σ2
ρB =

1

A2
·A2

AN∑

i=1

α2
i +

ε2m
A2
·A2N

=
AN∑

i=1

α2
i + ε2mN

= A‖f‖2 + ε2mN = A‖f‖2 + ε2N (38)

Case C watermarked with the correct watermark

ρ =
1

A

∑

i

∑

j

αjni 〈ψi, ψj〉+
1

A

∑

i

∑

j

εnjni 〈ψi, ψj〉

µρC = E[ρ] = ε ·N (39)

σ2
ρC = E[ρ− µρC ]2 = E[ρ2]− µ2

ρC

=
1

A2

[
E[
∑

i

∑

j

αjni 〈ψi, ψj〉]2 + E[
∑

i

∑

j

εnjni 〈ψi, ψj〉]2

+ 2E[
∑

i

∑

j

αjni 〈ψi, ψj〉 ·
∑

k

∑

l

εnlnk 〈ψk, ψl〉]
]
− ε2N2

=
1

A2

[∑

i

E[n2
i ][
∑

j

αj 〈ψi, ψj〉]2

+ E[
∑

i

∑

j

εnjni 〈ψi, ψj〉 ·
∑

k

∑

l

εnlnk 〈ψk, ψl〉]

+ 2E[
∑

i

∑

j

αjni 〈ψi, ψj〉 ·
∑

k

∑

l

εnlnk 〈ψk, ψl〉]
]

− ε2N2

For each of the item in the expression,

(1) From the Eq. 37, we have

∑

i

E[n2
i ][
∑

j

αj 〈ψi, ψj〉]2 =
AN∑

i=1

[
∑

j

αj 〈ψi, ψj〉]2

= A2
AN∑

i=1

α2
i
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(2) The second item in the expression

E[
∑

i

∑

j

εnjni 〈ψi, ψj〉 ·
∑

k

∑

l

εnlnk 〈ψk, ψl〉]

= E[
∑

i

ε2n4
i 〈ψk, ψl〉2] ← i = j = k = l

+ E[
∑

i

∑

k

ε2n2
i 〈ψi, ψi〉 · n2

k 〈ψk, ψk〉] ← i = j, k = l, i 6= k

+ 2E[
∑

i

∑

j

ε2n2
jn

2
i 〈ψi, ψj〉2] ← i = k, j = l, i 6= j

or i = l, j = k, i 6= j

+ 0 ← else

= ε2
∑

i

E[n4
i ] + ε2

∑

i,k,i6=k
E[n2

i ]E[n2
k] + 2ε2

∑

i,j,i6=j
E[n2

i ]E[n2
j ] 〈ψi, ψj〉2

= 3ANε2 + ε2(A2N2 −AN) + 2ε2
[ AN∑

i=1

AN∑

j=1

〈ψi, ψj〉2 −
AN∑

i=1

〈ψi, ψi〉2
]

= 3ANε2 + ε2(A2N2 −AN) + 2ε2(A2N −AN)

= A2ε2N2 + 2ε2A2N

= ε2A2(N2 + 2N)

(3) The third item in the expression

E[
∑

i

∑

j

αjni 〈ψi, ψj〉 ·
∑

k

∑

l

εnlnk 〈ψk, ψl〉]

= E[
∑

i

∑

j

εαjn
3
i 〈ψi, ψj〉 〈ψi, ψi〉] ← i = k = l

+ 0 ← else

= 0

∴

σ2
ρC =

1

A2

[
A2

AN∑

i=1

α2
i + ε2A2(N2 + 2N)

]
− ε2N2

=
AN∑

i=1

α2
i + ε2(N2 + 2N)− ε2N2

= A‖f‖2 + 2ε2N (40)

4.4 Performance comparison
We know the MSE incurred by the watermarking process:

Orthonormal Basis: MSE = E[‖f − f ′‖2] = Nε2 = D

Tight Frame: MSE = E[‖f − f ′‖2] =
Nε2

A

Frame Basis:
Mε2

B2
≤MSE = E[‖f − f ′‖2] ≤ Mε2

A2
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To achieve same MSE’s for the three expansions, the watermarking strength ε must be adjusted as:

Orthonormal Basis: ε =

√
D

N
(41)

Tight Frame: ε =

√
AD

N
(42)

Frame Basis:

√
D

M
A ≤ ε ≤

√
D

M
B (43)

The statistical parameters of the Gaussian modeled correlations are listed in Table 4.4.

Table 1: Mean and standard deviation of the watermark correlation.

Orthonormal Basis Tight Frame
Case A µρA = 0 µ′ρA = 0

σ2
ρA = ‖f‖2 σ

′2
ρA = A‖f‖2

Case B µρB = 0 µ′ρB = 0

σ2
ρB = ‖f‖2 +Nε2 = ‖f‖2 +D σ

′2
ρB = A‖f‖2 +Nε

′2 = A‖f‖2 +AD

Case C µρC = ε ·N =
√
ND µ′ρC = ε′ ·N =

√
AND

σ2
ρC = ‖f‖2 + 2Nε2 = ‖f‖2 + 2D σ

′2
ρC = A‖f‖2 + 2Nε

′2 = A‖f‖2 + 2AD

4.4.1 No watermarking vs. correct watermarking

H0 : Case A
H1 : Case C

For Orthonormal Basis:

PF =
1

2
erfc(

Tρ√
2σρA

)

=
1

2
erfc(

Tρ√
2‖f‖2

)

For Tight Frame:

P ′F =
1

2
erfc(

T ′ρ√
2σ′ρA

)

=
1

2
erfc(

T ′ρ√
2A‖f‖2

)

In order for the false alarm error be the same, PF = P ′F , we need

Tρ√
2‖f‖2

=
T ′ρ√

2A‖f‖2

So that T ′ρ =
√
ATρ

Since the missing error is:

PM =





1
2 + 1

2 erf(
Tρ−µρC√

2σρC
) Tρ ≥ µρC

1
2 erfc(

µρC−Tρ√
2σρC

) Tρ < µρC
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(1) if Tρ ≥ µρC , then T ′ρ =
√
ATρ ≥

√
AµρC = µ′ρC

We have

PM =
1

2
+

1

2
erf(

Tρ − µρC√
2σρC

)

P ′M =
1

2
+

1

2
erf(

T ′ρ − µ′ρC√
2σ′ρC

)

Since

T ′ρ − µ′ρC√
2σ′ρC

=

√
ATρ −

√
AµρC√

2
√
A‖f‖2 + 2ANσ2

=

√
ATρ −

√
AµρC√

2
√
AσρC

=
Tρ − µρC√

2σρC

Therefore, we have PM = P ′M .

(2) Similarly, if Tρ < µρC , we have T ′ρ < µ′ρC , and

PM =
1

2
erfc(

µρC − Tρ√
2σρC

)

P ′M =
1

2
erfc(

µ′ρC − T ′ρ√
2σ′ρC

)

Since,
µ′ρC − T ′ρ√

2σ′ρC
=
µρC − Tρ√

2σρC

we have PM = P ′M also.

That is, the probability of missed detection error is the same regardless of whether an orthonormal or tight
frame is used.

4.4.2 Watermarking Discrimination

H0 : Case B
H1 : Case C

For Orthonormal Basis:

PF =
1

2
erfc(

Tρ√
2σρB

)

=
1

2
erfc(

Tρ√
2
√
‖f‖2 +D

)
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For Tight Frame:

P ′F =
1

2
erfc(

T ′ρ√
2σ′ρB

)

=
1

2
erfc(

T ′ρ√
2
√
A‖f‖2 +AD

)

In order for PF = P ′F , we need

1

2
erfc(

Tρ√
2
√
‖f‖2 +D

) =
1

2
erfc(

T ′ρ√
2
√
A‖f‖2 +AD

)

So that
T ′ρ =

√
ATρ

(1) if Tρ ≥ µρC , then T ′ρ =
√
ATρ ≥

√
AµρC = µ′ρC

we have

PM =
1

2
+

1

2
erf(

Tρ − µρC√
2σρC

)

P ′M =
1

2
+

1

2
erf(

T ′ρ − µ′ρC√
2σ′ρC

)

T ′ρ − µ′ρC√
2σ′ρC

=

√
ATρ −

√
AµρC√

2
√
AσρC

=
Tρ − µρC√

2σρC

Therefore, we have PM = P ′M .

(2) if Tρ < µρC , we have T ′ρ < µ′ρC , and

PM =
1

2
erfc(

µρC − Tρ√
2σρC

)

P ′M =
1

2
erfc(

µ′ρC − T ′ρ√
2σ′ρC

)

µ′ρC − T ′ρ√
2σ′ρC

=

√
AµρC −

√
ATρ√

2
√
AσρC

=
µρC − Tρ√

2σρC

So that we will have PM = P ′M also.

19

Technical Report MSSU-COE-ERC-01-18, Engineering Research Center, Mississippi State University, December 2001



Again, the performance is the same.

5. Conclusions
After the above theoretical analysis, we can draw the following conclusions:

1. RDWT expansion is a frame expansion, and one scale RDWT is a tight frame with the redundancy
A = 2.

2. Frame expansion is more robust than the orthonormal basis expansion when adding white noise onto
the transform domain; i.e., less distortion is obtained when water-marking with a fixed watermark
energy.

3. However, tight frame doesn’t show obvious performance advantages over the orthonormal basis when
considering the spread-spectrum watermarking problems, as the additional robustness of the overcom-
plete expansion does not aid watermark detection by correlation operators.
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