

Triton Technical Overview

Randall E. Hand and Robert J. Moorhead II
December 13, 2001

ERC Technical Report #MSSU-COE-ERC-01-14

Visualization, Analysis, and Imaging Lab
Engineering Research Center
Mississippi State University

Miss. State, MS 39762

Triton Technical Manual 2 of 7

REQUIREMENTS...3

RUN-TIME REQUIREMENTS ...3
COMPILE-TIME REQUIREMENTS ..3

FEATURES ..3

RUN-TIME CONFIGURATION ..3
DATA FORMATS ...3
VISUALIZATION METHODS...4

Scalar Surfaces ...4
Scalar Posts...4
Vector Posts ..5
Vector Flow Glyph Layer ...5
ROAM Heightfields ..5

DESIGN & IMPLEMENTATION ...7

DATA SOURCES...7
VISUAL COMPONENTS ..7

Triton Technical Manual 3 of 7

Requirements

Run-Time Requirements
Triton requires (for an SGI):

• OpenGL
• SGI Irix 6.5 (with on-board Texture Memory)
• Read access to all data
• Configuration files for VRJuggler (specific to your system)

While VRJuggler will run on platforms other than Irix, none have been tested

with Triton.

Compile-Time Requirements
For compilation, you also need:

• VRJuggler 1.0+ (refer to VRJuggler documentation for additional
requirements and instructions)

• GNU Compiler utilities (gcc, g++, and gmake specifically)
• MIPSpro Compiler version 7.3.1.1m or greater

Features

Run-Time Configuration
Triton supports an text-file configuration setup that can be easily changed with
any text editor. This file allows the user to change all aspects of the program
from data sources, cache sizes, and rendering optimizations, without having to
recompile or edit the program directly. At a later date, these options will also be
available from inside the program.

Data Formats
Triton supports the following data formats:

• Raw Binary rectilinear data
• ASCII Fixed Data
• On-The-Fly magnitude Data (calculated from other data sources)
• DataManager Network connection data (under development)

These data formats are specified at run-time in the configuration files, and

can be mixed and matched to form a very flexible data set. For example, a U-
flow and V-Flow files can be loaded through two Raw Binary data loaders, and
the magnitude of the flow can be calculated through an On-The-Fly Magnitude
Data loader to create colormapped flow-magnitude surfaces.

Data is also cached in memory, to minimize memory consumption. This also
helps to minimize network traffic and hard drive accesses, thereby improving
performance. Data is loaded on it’s first access, and unused data is replaced

Triton Technical Manual 4 of 7

later by new data on a later access. Also supported is multi-file tiled data (like
GTOPO30), where each tile is cached individually, improving memory
consumption.

Each data loader supports scaling & masking operations, meaning that none
of the visualization methods need to know about them. Each loader also
supports multiple layers, but does not support multiple timesteps at this time.

Visualization Methods
Triton currently supports the following visualization methods:

• Scalar Surfaces
• Scalar Posts
• Vector Posts
• Vector Flow Glyph Layer
• Heightfields (Rendered with ROAM)
Each of these methods will load data from any of the available data loaders,

and supports ISTV-style colormaps. Any combination of these visualization
methods can be operating at the same time, and any one can be duplicated as
often as wished. For example, the user could have a Scalar Surface at layer 7
(One Scalar Surface), Vector Flow Glyph layers for layers 1 through 6 (5 Vector
Flow Glyphs), and several Scalar Posts scattered around, all while rendering the
context bathymetry using a ROAM Heightfield.

Scalar Surfaces
A scalar surface renders a colormapped scalar value for all data points in a
square subsection of a single layer, centered around the user. The user defines
the following:

• the data source to use for colormapping (DC)
• the layer to render (L)
• the data source to use for height (DH)
• the colormap (C)
• and the size (S)
The entire area (S) is generated as an RGBA texture, and drawn on a

rectangle at the desired location. The height of the quad is taken from DH at the
user’s location, and the quad is centered around the user. DH is usually an ASCII
Fixed-data source, to keep the data layers at constant heights independent of
user position.

Scalar Posts
A scalar post renders a colormapped scalar value for a single point, relative to
the user’s position, in all layers. The user defines the following:

• the data source to use for colormapping (DC)
• the data source to use for heights (DH)
• the colormap (C)
• and a location relative to the user (x,y)

Triton Technical Manual 5 of 7

The data in DC at (x,y, each DH) is rendered as a post penetrating all layers of
the data. Smooth shading is used to make the colors smoothly transition. So
that the user can tell where the exact layers of DH are at, a striped post is drawn
next to it, with the transitions indicating the exact layers. DH is usually a Fixed-
Data source, but can be a varying data source and the transition points will
change to match the current position. This is typically used to indicate a value,
such as temperature, that can vary significantly from layer to layer.

Vector Posts
A vector post renders a colormapped scalar value for a single point, relative to
the user’s position, in all layers. Instead of being a flat post through, the data
values wrap around the striped post to reflect two more scalar fields defined by
the user. The user defines the following:

• the data source to use for colormapping (DC)
• the data source to use for heights (DH)
• the two data sources to use for directions (DU,DV)
• the colormap (C)
• a location relative to the user (x,y)
• and a magnification factor to use for the direction (M)
The data in DC at (x,y, each DH) is rendered as a ribbon penetrating all layers

of the data, stretched in the direction (M*DU,M*DV). Smooth shading is used to
make the colors smoothly transition. So that the user can tell where the exact
layers of DH are at, a striped post is drawn next to it, with the transitions indicating
the exact layers. DH is usually a Fixed-Data source, but can be a varying data
source and the transition points will change to match the current position. This is
typically used to indicate the flow at a single point in all layers.

Vector Flow Glyph Layer
A vector flow glyph layer renders a colormapped scalar value onto a line
indicating a vector value for all points in a square around the user, in a single
layers. The user defines the following:

• the data source to use for colormapping (DC)
• the data source to use for heights (DH)
• the two data sources to use for directions (DU,DV)
• the colormap (C)
• a Size (S)
• a Layer to enable (L)
For each point in a square (S) around the user in the layer (L), a line is drawn

from the grid point in the direction of (DU,DV). The line is colormapped by the
values in DC. DC is usually a On-The-Fly-calculated magnitude data source,
calculating the magnitude of the vector (DU,DV) at each point.

ROAM Heightfields
Probably the most complex of all the visualization methods, ROAM Heightfields
let you render a heightfield of any user defined quality at interactive framerates.

Triton Technical Manual 6 of 7

ROAM is a run-time level of detail algorithm that stands for Real-Time Optimally
Adapting Meshes. It recursively subdivides a surface into triangles, until either a
certain detail is achieved, or a certain number of triangles is hit. By changing this
upper bound, you can ensure that the framerate stays high no matter how
complex the geometry is.

The user defines the following: (A short list of the most important values)

• the data source to use for colormapping (DC)
• the data source to use for heights (DH)
• the colormap (C)
• A Patch Size (Ps)
• A Starting Variance (V)
• A Maximum number of Triangles (T)
• Among several others
ROAM renders the data as a surface beneath the user. Each area is

generated to a full-detail texture, then the texture is mapped on the lower-detail
geometry, to ensure the color data is accurate, even if the geometry is not.
These textures are also used to render a map in front of the user, with a small
cone indicating the current direction.

This method also implements View-Frustrum Culling on a per-wall basis. This
means each wall draws only the parts of the scene visible from that side. This
vastly increases the framerate, because each side wall can only see ¼ of the
scene, and the floor can only see a tiny area when the user is bound close to the
ground.

Several articles can be found on ROAM, but this implementation has been
heavily modified to support the following:

• Dynamic loading of data – As the user moves around, data moves off one
edge of the meshable-area, and new data must be loaded. This
implementation only loads new data when required where most load all
data at startup.

• Separate tessellation and rendering – Most methods tessellate into
triangles in a binary tree, and render directly from the tree. This
implementation achieves an order of magnitude speedup from converting
the tree into a simple array list before rendering, and rendering from that.

• Per-Context View Frustrum Culling – Textures are only generated and
loaded for areas that can be seen from the current wall, and surfaces are
only rendered if it is possible they could be seen from there.

• Several other optimizations through the use of lookup tables.

This method is usually only used to render the bathymetry for contextual
information.

Triton Technical Manual 7 of 7

Design & Implementation

Data Sources
Triton takes a slightly different approach to data loaders than most other

programs. A DataManager object is instantiated at program startup, and
configured from the configuration file. It maintains a list of all databases, along
with what type of database they are. It instantiates DataSource objects, which
are the base object of all the file loaders. Each DataSource is required to
implement a few basic functions such as LoadData, LoadPoint, SetLayer, etc.
Each DataSource is also given a text name. Each DataSource internally caches
frequently and recently used data to improve performance.

Because of this design, a Visualization method designed to use a
DataSource instead of a global array or such, automatically works with any file
loader without requiring re-compilation or editing. Unfortunately, this imposes the
restriction of rectilinear file formats.

Visual Components
 Triton uses a similar structure for it’s visual components. On startup, it
reads a list of Visual Components from the configuration file, and instantiates and
configures a VisualComponent object for each one. The VisualComponent
object is the base object for all of the Visualization methods, and has a few
simple functions to override such as PreFrame, PostFrame, PostRender,
Render, etc. When the VisualComponent is created, it’s passed a reference to
the DataManager where it can obtain it’s data through the text data names. This
means a visualization method doesn’t need to know how to access the data, just
how to render the data. It also receives a reference to the UserData object,
which contains information like the user’s current location and orientation. This is
used for interacting with the environment.
 Because of this design, it’s very simple to add new visualization methods
into the system. All of the data-loader work has been removed to an entirely
separate code base, meaning the programmer can focus on OpenGL rendering
and algorithms for optimizations. Also, Visualization methods can be designed in
template classes allowing for a single class that can load floating point, integer,
or byte data. Then they can be encapsulated a VisualComponent object for each
data type.

This is the case for ROAM Heightfields. The ROAM Heightfield class is
actually a template class ROAMLandscape. But through the VisualComponent
Manager, I have added VCROAMFloat, VCROAMInt, and VCROAMByte with a
minimum of extra code.

