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Requirements 

Run-Time Requirements 
Triton requires (for an SGI): 

• OpenGL 
• SGI Irix 6.5 (with on-board Texture Memory) 
• Read access to all data 
• Configuration files for VRJuggler (specific to your system) 

 
While VRJuggler will run on platforms other than Irix, none have been tested 

with Triton. 

Compile-Time Requirements 
For compilation, you also need: 

• VRJuggler 1.0+ (refer to VRJuggler documentation for additional 
requirements and instructions) 

• GNU Compiler utilities (gcc, g++, and gmake specifically) 
• MIPSpro Compiler version 7.3.1.1m or greater 

Features 

Run-Time Configuration 
Triton supports an text-file configuration setup that can be easily changed with 
any text editor.  This file allows the user to change all aspects of the program 
from data sources, cache sizes, and rendering optimizations, without having to 
recompile or edit the program directly.  At a later date, these options will also be 
available from inside the program. 

Data Formats 
Triton supports the following data formats: 

• Raw Binary rectilinear data 
• ASCII Fixed Data 
• On-The-Fly magnitude Data (calculated from other data sources) 
• DataManager Network connection data (under development) 
 
These data formats are specified at run-time in the configuration files, and 

can be mixed and matched to form a very flexible data set.  For example, a U-
flow and V-Flow files can be loaded through two Raw Binary data loaders, and 
the magnitude of the flow can be calculated through an On-The-Fly Magnitude 
Data loader to create colormapped flow-magnitude surfaces. 

Data is also cached in memory, to minimize memory consumption.  This also 
helps to minimize network traffic and hard drive accesses, thereby improving 
performance.  Data is loaded on it’s first access, and unused data is replaced 
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later by new data on a later access.  Also supported is multi-file tiled data (like 
GTOPO30), where each tile is cached individually, improving memory 
consumption. 

Each data loader supports scaling & masking operations, meaning that none 
of the visualization methods need to know about them.  Each loader also 
supports multiple layers, but does not support multiple timesteps at this time. 

Visualization Methods 
Triton currently supports the following visualization methods: 

• Scalar Surfaces 
• Scalar Posts 
• Vector Posts 
• Vector Flow Glyph Layer 
• Heightfields (Rendered with ROAM) 
Each of these methods will load data from any of the available data loaders, 

and supports ISTV-style colormaps.  Any combination of these visualization 
methods can be operating at the same time, and any one can be duplicated as 
often as wished.  For example, the user could have a Scalar Surface at layer 7 
(One Scalar Surface), Vector Flow Glyph layers for layers 1 through 6 (5 Vector 
Flow Glyphs), and several Scalar Posts scattered around, all while rendering the 
context bathymetry using a ROAM Heightfield. 

Scalar Surfaces 
A scalar surface renders a colormapped scalar value for all data points in a 
square subsection of a single layer, centered around the user.  The user defines 
the following:  

• the data source to use for colormapping (DC) 
• the layer to render (L) 
• the data source to use for height (DH) 
• the colormap (C ) 
• and the size (S) 
The entire area (S) is generated as an RGBA texture, and drawn on a 

rectangle at the desired location.  The height of the quad is taken from DH at the 
user’s location, and the quad is centered around the user.  DH is usually an ASCII 
Fixed-data source, to keep the data layers at constant heights independent of 
user position. 

Scalar Posts 
A scalar post renders a colormapped scalar value for a single point, relative to 
the user’s position, in all layers.  The user defines the following:  

• the data source to use for colormapping (DC) 
• the data source to use for heights (DH) 
• the colormap (C ) 
• and a location relative to the user (x,y) 
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The data in DC at (x,y, each DH) is rendered as a post penetrating all layers of 
the data.  Smooth shading is used to make the colors smoothly transition.  So 
that the user can tell where the exact layers of DH are at, a striped post is drawn 
next to it, with the transitions indicating the exact layers.  DH is usually a Fixed-
Data source, but can be a varying data source and the transition points will 
change to match the current position.  This is typically used to indicate a value, 
such as temperature, that can vary significantly from layer to layer. 

Vector Posts 
A vector post renders a colormapped scalar value for a single point, relative to 
the user’s position, in all layers.  Instead of being a flat post through, the data 
values wrap around the striped post to reflect two more scalar fields defined by 
the user.  The user defines the following: 

• the data source to use for colormapping (DC) 
• the data source to use for heights (DH) 
• the two data sources to use for directions (DU,DV) 
• the colormap (C ) 
• a location relative to the user (x,y) 
• and a magnification factor to use for the direction (M) 
The data in DC at (x,y, each DH) is rendered as a ribbon penetrating all layers 

of the data, stretched in the direction (M*DU,M*DV).  Smooth shading is used to 
make the colors smoothly transition.  So that the user can tell where the exact 
layers of DH are at, a striped post is drawn next to it, with the transitions indicating 
the exact layers.  DH is usually a Fixed-Data source, but can be a varying data 
source and the transition points will change to match the current position.  This is 
typically used to indicate the flow at a single point in all layers. 

Vector Flow Glyph Layer 
A vector flow glyph layer renders a colormapped scalar value onto a line 
indicating a vector value for all points in a square around the user, in a single 
layers.  The user defines the following: 

• the data source to use for colormapping (DC) 
• the data source to use for heights (DH) 
• the two data sources to use for directions (DU,DV) 
• the colormap (C ) 
• a Size (S) 
• a Layer to enable (L) 
For each point in a square (S) around the user in the layer (L), a line is drawn 

from the grid point in the direction of (DU,DV).  The line is colormapped by the 
values in DC.  DC is usually a On-The-Fly-calculated magnitude data source, 
calculating the magnitude of the vector (DU,DV) at each point. 

ROAM Heightfields 
Probably the most complex of all the visualization methods, ROAM Heightfields 
let you render a heightfield of any user defined quality at interactive framerates.  
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ROAM is a run-time level of detail algorithm that stands for Real-Time Optimally 
Adapting Meshes.  It recursively subdivides a surface into triangles, until either a 
certain detail is achieved, or a certain number of triangles is hit.  By changing this 
upper bound, you can ensure that the framerate stays high no matter how 
complex the geometry is.  
 
The user defines the following: (A short list of the most important values) 

• the data source to use for colormapping (DC) 
• the data source to use for heights (DH) 
• the colormap (C ) 
• A Patch Size (Ps) 
• A Starting Variance (V) 
• A Maximum number of Triangles (T) 
• Among several others 
ROAM renders the data as a surface beneath the user.  Each area is 

generated to a full-detail texture, then the texture is mapped on the lower-detail 
geometry, to ensure the color data is accurate, even if the geometry is not.  
These textures are also used to render a map in front of the user, with a small 
cone indicating the current direction. 

This method also implements View-Frustrum Culling on a per-wall basis.  This 
means each wall draws only the parts of the scene visible from that side.  This 
vastly increases the framerate, because each side wall can only see ¼ of the 
scene, and the floor can only see a tiny area when the user is bound close to the 
ground. 

Several articles can be found on ROAM, but this implementation has been 
heavily modified to support the following: 

• Dynamic loading of data – As the user moves around, data moves off one 
edge of the meshable-area, and new data must be loaded.  This 
implementation only loads new data when required where most load all 
data at startup. 

• Separate tessellation and rendering – Most methods tessellate into 
triangles in a binary tree, and render directly from the tree.  This 
implementation achieves an order of magnitude speedup from converting 
the tree into a simple array list before rendering, and rendering from that. 

• Per-Context View Frustrum Culling – Textures are only generated and 
loaded for areas that can be seen from the current wall, and surfaces are 
only rendered if it is possible they could be seen from there. 

• Several other optimizations through the use of lookup tables. 
 
This method is usually only used to render the bathymetry for contextual 
information. 
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Design & Implementation 

Data Sources 
Triton takes a slightly different approach to data loaders than most other 

programs.  A DataManager object is instantiated at program startup, and 
configured from the configuration file.  It maintains a list of all databases, along 
with what type of database they are.  It instantiates DataSource objects, which 
are the base object of all the file loaders.  Each DataSource is required to 
implement a few basic functions such as LoadData, LoadPoint, SetLayer, etc.  
Each DataSource is also given a text name.  Each DataSource internally caches 
frequently and recently used data to improve performance. 

Because of this design, a Visualization method designed to use a 
DataSource instead of a global array or such, automatically works with any file 
loader without requiring re-compilation or editing.  Unfortunately, this imposes the 
restriction of rectilinear file formats. 

Visual Components 
 Triton uses a similar structure for it’s visual components.  On startup, it 
reads a list of Visual Components from the configuration file, and instantiates and 
configures a VisualComponent object for each one.  The VisualComponent 
object is the base object for all of the Visualization methods, and has a few 
simple functions to override such as PreFrame, PostFrame, PostRender, 
Render, etc.  When the VisualComponent is created, it’s passed a reference to 
the DataManager where it can obtain it’s data through the text data names.  This 
means a visualization method doesn’t need to know how to access the data, just 
how to render the data.  It also receives a reference to the UserData object, 
which contains information like the user’s current location and orientation.  This is 
used for interacting with the environment. 
 Because of this design, it’s very simple to add new visualization methods 
into the system.  All of the data-loader work has been removed to an entirely 
separate code base, meaning the programmer can focus on OpenGL rendering 
and algorithms for optimizations.  Also, Visualization methods can be designed in 
template classes allowing for a single class that can load floating point, integer, 
or byte data.  Then they can be encapsulated a VisualComponent object for each 
data type.   

This is the case for ROAM Heightfields. The ROAM Heightfield class is 
actually a template class ROAMLandscape.  But through the VisualComponent 
Manager, I have added VCROAMFloat, VCROAMInt, and VCROAMByte with a 
minimum of extra code. 
 
 
 


