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ABSTRACT

A multiple regression scheme with tropical cyclone intensity change as the dependent variable has been
developed. The new scheme is titled the Typhoon Intensity Prediction Scheme (TIPS) and is similar to one used
operationally at the National Hurricane Center. However, TIPS contains two major differences: it is developed
for the western North Pacific Ocean, and utilizes digitized satellite data; the first time such satellite information
has been combined with other predictors in a tropical cyclone multiple regression scheme. It is shown that the
satellite data contains vital information that distinguishes between fast and slow developing tropical cyclones.
The importance of other predictors (such as wind shear, persistence, climatology, and an empirical formula
dependent on sea surface temperature) to intensity change are also clarified in the statistical analysis. A nor-
malization technique reveals threshold values useful to forecasters. It is shown that TIPS may be competitive
with the Joint Typhoon Warning Center in forecasting tropical cyclone intensity change.

1. Introduction

a. Overview of intensity prediction accuracy

According to a 1987 survey of all tropical cyclone
(TC) forecast centers in the world, the overriding TC
research emphasis has been placed on track forecasting
with little investigation on intensity change (McBride and
Holland 1987). The past decade has witnessed little im-
provement (DeMaria and Kaplan 1994b; Elsberry et al.
1992). As a result, systematic and skillful intensity fore-
casting techniques have yet to be established, and much
is still not understood about TC intensity change. A Na-
tional Disaster Survey Report (1993) noted that hurricane
intensity forecasts lack accuracy and lag far behind other
forecasting applications such as track prediction. The re-
port urges scientists to ‘‘redouble their efforts to develop
models and operational techniques to forecast tropical
cyclone intensity changes more effectively.’’

Not surprisingly, large errors occur when forecasting
TC intensity. The measure of intensity forecast around
the world is the maximum sustained surface wind speed
(Vmax), often tabulated in knots. The mean 24-h Joint
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Typhoon Warning Center (JTWC) absolute error was
12.5 kt for intensity forecasts during 1980–85 (Mundell
1990). Furthermore, the Australian Bureau of Meteor-
ology Research Center (BMRC) reports that their TC
intensity forecasts were not even as accurate as a pre-
diction based on persistence or climatology (Elsberry
et al. 1992). DeMaria and Kaplan (1994b) noted that
official National Hurricane Center (NHC) forecast skill
was comparable to a regression forecast based on cli-
matology and persistence, and only slightly better than
persistence.

The largest errors in TC intensity forecasting occur
with ‘‘rapidly intensifying’’ systems (Mundell 1990),
defined as a central pressure drop of at least 42 mb day21

by Holliday and Thompson (1979). (This corresponds
to an approximate Vmax increase of 45 kt day21.) Other
classifications exist to delineate abrupt TC development,
such as ‘‘explosive deepening’’ (Dunnavan 1981) de-
fined as a 12-h central pressure drop of at least 30 mb.
However, these definitions only apply to one time period
(24 h) and would provide too few cases in the com-
parison of different intensification rates (section 4). In
this paper, a broader category of ‘‘fast intensification’’
is used, defined as a 24-h (48-h) increase of Vmax by 25
kt day21 [45 kt (2 day)21] or more. As shown by Mundell
(1990) and by this paper, all three classifications are
associated with errors that are roughly twice the average
intensity error, and result in underforecasting intensity.

b. Consequences of underforecasting TC intensity

Unanticipated fast development is currently a fore-
cast reality. Some storms that experienced unpre-
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dicted fast intensification are Typhoon Niña (1987),
which struck the Philippines, killed hundreds, and left
half a million homeless (Mundell 1990); Hurricane
Hugo (1989) before its South Carolina landfall; Ty-
phoon Omar (1992) before it impacted Guam, causing
$457 million in damage and grounding two navy sup-
ply ships; Hurricane Andrew (1992) before its Florida
landfall, resulting in record property damage esti-
mated at $25 billion, destroying 25 524 homes, dam-
aging 101 241 homes, and putting eight insurance
companies out of business (Mayfield et al. 1994;
Sheets 1994); and Hurricane Opal (1995) the night
before its Florida landfall, surprising awakening res-
idents who congested the road systems in last-minute
evacuation attempts (Fitzpatrick 1996).

It is the prospect of more such dangerous situations
that motivates this paper, which describes a new mul-
tiple regression scheme for TC intensity change. De-
veloped on western North Pacific data, this statistical
analysis yields an intensity forecast scheme, which
may be used as guidance in real-time operations, and
also generates understanding about TC intensity
change.

c. Previous TC intensification research

Theoretical intensity change work concentrates on
three areas: 1) interaction with upper-tropospheric
troughs and angular momentum fluxes, categorized here
as ‘‘upper-level forcing’’; 2) inner-core convective pro-
cesses; and 3) environmental factors such as sea surface
temperature (SST) and vertical wind shear. The impor-
tance of upper-level forcing has been a contentious issue
in tropical meteorology (Fitzpatrick 1996). The dis-
agreement stems from the fact that fast TC development
is a relatively unusual event. One interpretation is that
an ‘‘extra ingredient’’ must be required to enhance TC
intensification, and that extra factor is upper-level forc-
ing. The other interpretation is that the combination of
warm water and low wind shear is an infrequent event
and that fast TC intensification is generally more fa-
vorable in an environment free of upper-level anomalies
since upper-tropospheric troughs are often associated
with wind shear.

Two scenarios of trough interactions that might in-
tensify a TC have been proposed: 1) enhancement of
the storm’s outflow by favorable positioning of a
trough (Sadler 1978; Shi et al. 1990; Rodgers et al.
1991) and/or 2) enhancement of the storm’s devel-
opment through dynamical forcing, viewed in the con-
text of differential vorticity advection and potential
vorticity coupling (Montgomery and Farrell 1993).
Upper-level asymmetries (eddy fluxes), which are of-
ten but not always associated with troughs, also may
affect intensification. One azimuthally averaged quan-
tity, known as the relative eddy angular momentum
flux convergence (REFC), can theoretically contribute
to TC development. Many researchers have attributed

REFC forcing to fast TC intensification in modeling
studies (Pfeffer and Challa 1980), theoretical discus-
sions (Holland and Merrill 1984), observational stud-
ies (Molinari and Vollaro 1989; Rodgers and Pierce
1995), and statistical studies (DeMaria et al. 1993).
Other eddy flux terms may also be important, such as
planetary eddy angular momentum flux convergence
(PEFC) (DeMaria and Kaplan 1994b; Molinari and
Vollaro 1990).

In contrast with these findings, Merrill (1988) could
find no relationship between REFC and intensity
change. He speculated that any positive influences of
upper-level forcing is usually offset by the negative
influences of increased vertical wind shear associated
with a trough. Merrill also stated that, in a general
sense, environmental interactions must contribute
negatively to intensity change since most TCs do not
reach moderate to extreme intensities. Merrill noted
the existence of a maximum potential intensity (MPI)
as a function of SST. MPI represents an upper bound
for which TCs of stronger intensity do not exist for
a given SST. An example of an empirical MPI curve
is shown for western Pacific TCs in Fig. 1 (Kubat
1995). Since few TCs reach their MPI (Merrill 1987;
Evans 1993; DeMaria and Kaplan 1994a), Merrill ar-
gued the environment is exerting a negative influence
most of the time.

The effect of SST on TC development has been
known for decades (Palmén 1948). The ultimate en-
ergy source for the TC is the latent and sensible heat
flux from the ocean. As air spirals into a TC, it is
subjected to sea level pressure reductions that would
decrease the air temperature substantially due to ad-
iabatic expansion; however, because of ocean fluxes,
an air parcel is able to (mostly) preserve its air tem-
perature. As originally discussed by Riehl (1954), an
air parcel following a mostly isothermal path toward
the eyewall region and experiencing a pressure drop
will obtain buoyancy as it ascends in the eyewall; this
gain offsets the stabilization effect of the developing
warm-core aloft. Therefore, the secondary circulation
is maintained and the TC can continue to intensify
through this feedback mechanism (Fitzpatrick 1996;
Holland 1997). As SSTs increase, this feedback in-
creases the MPI nonlinearly as shown in Fig. 1. As
will be seen, the most important statistical TC inten-
sity predictor is a variation of the MPI threshold.

Another important contributor to intensification may
be eye formation (Fitzpatrick 1996). Typically an eye
develops near hurricane strength (Dvorak 1984), and
Mundell (1990) showed that most rapid intensification
occurs near eye formation. Operational forecasters and
researchers also have recognized that inner-core con-
vective flare-ups indicate potentially explosive devel-
opment. Indeed, several satellite forecast schemes for
predicting TC intensity have been developed on the
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FIG. 1. The maximum potential intensity (MPI) between climatological SSTs and minimal sea level
pressure for all western Pacific tropical cyclones during 1945–89. The line represents an empirical upper
bound on intensity as a function of SST. A plot vs maximum sustained wind reveals a similar structure
(not shown). Adapted from Kubat (1995).

premise that convective bursts precede fast intensifi-
cation.1

d. Satellite TC intensity forecast schemes

Despite today’s accessibility to satellite data, few ob-
jective TC intensity forecasting techniques exist based
on this technology. The only proven technique used
operationally is a flowchart algorithm based on synoptic
observations, TC structure, and TC development cli-
matology called the ‘‘Dvorak scheme’’ (Dvorak 1975,
1984). The Dvorak technique contains both a current
intensity analysis scheme and an intensity prediction
scheme, but only the former has been consistently used
operationally, and both contain some subjectivity. How-
ever, research suggests that quantitative relationships
between TC intensity change and satellite convection
exist which would be very useful operationally.

Gentry et al. (1980) found the cooler the mean bright-
ness temperatures (Tb) of the cloud tops over an 88 area,
the more likely Vmax will increase in 24–36 h. From
these results, regression equations were developed using
Tb parameters that outperformed persistence at 24 h on

1 As mentioned by one reviewer, sometimes extreme convection
can indicate arrested development—called the ‘‘central cold cover’’
signal (Dvorak 1984).

independent data. Steranka et al. (1986) expanded on
Gentry et al.’s research by investigating area-average Tb

within 28 of the TC center. Prolonged surges of intense
convection near the storm center (measured as 6-h run-
ning means2) were followed by 24-h intensification of
5 m s21 or more 71% of the time. Steranka et al. also
devised multiple regression equations using Tb, , and2T b

Vmax, which were competitive with persistence and cli-
matology.

Mundell (1990) presented a methodology to distin-
guish which storms will rapidly intensify and which
storms will develop at a slower rate. Mundell developed
a satellite scheme which measures the degree of inner-
core (within 28 of the TC center) versus outer-core (28–
68) convection. Mundell hypothesized that high ratios
of inner- versus outer-core convection indicate future
rapid intensification since inner-core processes would
dominate over outer-core processes. This idea was based
on reconnaissance observations by Weatherford and
Gray (1988) that TCs with fast outer-core winds (im-
plying strong inertial stability) restrict inflow to the eye-
wall and, thereby, do not efficiently concentrate inner-
core convection (Holland and Merrill 1984).

2 A running mean is an average of current and previous observa-
tions. In this paper, it refers to the average of current and previous
3-h satellite pixel counts.
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Mundell smoothed the satellite data using a running
mean to remove the natural oscillatory behavior of con-
vection and to eliminate the diurnal TC convective sig-
nals (Hobgood 1986; Hallin 1991). By using climatol-
ogy and defining a threshold where inner-core convec-
tion dominated outer-core convection, Mundell fore-
casted 7 out of 10 rapidly deepening TCs correctly in
a hindcast mode. Furthermore, of the 60 nonrapid dee-
peners in the dataset, 59 were predicted correctly in the
development set.

While Mundell’s work is interesting, it possesses sev-
eral problems. The threshold value seems arbitrary and
lacks a physical basis, plus the development dataset is
marginal in size. Furthermore, his scheme only identifies
potential rapid deepeners and does not forecast intensity
change. Therefore, major objectives of this study are 1)
to incorporate inner-core pixel counts in an intensity
forecasting scheme in a more objective manner and 2)
to develop a better understanding of the role of con-
vection in intensity change.

e. Statistical TC intensity forecast schemes

The power of multiple regression analysis is the ob-
jective selection of predictors. Only ‘‘statistically sig-
nificant’’ predictors are chosen, the importance of each
predictor may be quantitatively assessed, and the
amount of explained variance R2 may be determined.
In other words, not only does multiple regression pro-
vide a forecast equation, but it generates understanding
of intensity change processes through objective analysis.

The first intensity change regression model, devel-
oped for the Atlantic basin and based on climatology
using ‘‘best-track’’ data,3 was called the Statistical Hur-
ricane Intensity Forecast, or SHIFOR (Jarvinen and
Neumann 1979). The forecast equations were generated
by stepwise regression using best-track TC data as input.
Significant predictors include Julian day, initial storm
latitude and longitude, zonal and meridional component
of initial storm movement, initial intensity, and previous
24-h intensity change. SHIFOR is currently still com-
petitive with NHC forecasts (DeMaria and Kaplan
1994b). A similar scheme for the western North Pacific
was developed by Elsberry et al. (1975), and recently
updated by Chu (1994), called the Statistical Typhoon
Intensity Forecast model.

Since no synoptic information is included in SHIFOR,
the amount of variance explained for 24-h intensity
change is only about 30%. The first attempt at incor-
porating synoptic parameters in a multiple regression
model was performed by Pike (1985). Merrill (1987)
considered a much broader range of predictors (syn-
optic, persistence, climatology, and SST) for the Atlan-

3 The term ‘‘best track’’ refers to postprocessed intensity (Vmax)
estimates and storm positions at 6-h intervals.

tic. Elsberry et al. (1988) developed a regression scheme
for the western North Pacific that included climatology,
persistence, and synoptic predictors. Important synoptic
parameters included environmental wind flows and wind
shear, which were decomposed into empirical orthog-
onal functions. However, Elsberry did not include SST
data.

DeMaria and Kaplan (1994b) expanded on Merrill’s
work with the Statistical Hurricane Intensity Prediction
Scheme (SHIPS) for the Atlantic basin. SHIPS includes
improved predictors and a larger sample. The amount
of variance explained by SHIPS is about 40% at 24 h.
SHIPS was tested using a jackknife procedure and
showed 10%–20% improvement compared with the of-
ficial forecast and SHIFOR. SHIPS is currently used as
forecast guidance at NHC in the Atlantic and eastern
Pacific Oceans.

Because of its promise, the SHIPS methodology will
be used in this paper. A major focus of this paper is to
incorporate satellite data into a multiple regression
scheme, and investigate if this new information could
reduce errors associated with fast intensifiers. This is
the only TC multiple regression scheme that combines
climatology, persistence, synoptic, satellite, and SST in-
formation with intensity change as the dependent vari-
able. Furthermore, no scheme analogous to SHIPS cur-
rently exists in the western North Pacific.

f. Outline of this paper

From this discussion, it is clear that more research is
needed on improving intensity change prediction as well
as comprehending the processes involved in intensity
change. This study encompasses a statistical approach
to understanding and predicting TC intensity change.
The dataset is presented in section 2. The statistical
methodology is described in section 3. Results are pre-
sented in section 4. Case studies are shown in section
5. A summary of this paper is presented in section 6.

2. Development of TIPS

A scheme similar to SHIPS was developed for the
western North Pacific basin, and is titled the Typhoon
Intensity Prediction Scheme (TIPS). A unique aspect of
TIPS is that digitized infrared satellite data are used as
predictors. Other predictors are based on climatology,
SST, persistence, and synoptic winds. Regression is per-
formed on 12-, 24-, 36-, and 48-h forecasts.4 It is shown
that satellite data contains vital information that distin-
guishes between TCs that intensify fast and those that
intensify at a slower rate.

TIPS is described in detail by Fitzpatrick (1996) and

4 A 60- and a 72-h scheme were not developed due to time re-
strictions, and because the author wanted to investigate short-term
forecasting first.
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FIG. 2. Grid used for storm-centered IR data processing. Data is
available between 08 and 88. Top portion is northern quadrant, left
is west, bottom is south, and right is east.

will be summarized here. Years 1983–86 were chosen
for this study since the actual TC intensity was measured
by reconnaissance flights. These flights were terminated
in 1987, and the accuracy of TC intensity data afterward
is uncertain (Martin and Gray 1993) since most TCs are
primarily estimated using the satellite techniques of
Dvorak (1984). The regression equations were devel-
oped for the years 1984–86, since these years contain
the most data compared to other 3-yr subsets (530 cases
and 66 storms for 24-h intensity change). The accuracy
of the empirical scheme is tested for 1983 (139 cases
and 19 storms for 24-h intensity change).

The SST data is stored by year and month on a 28
latitude and longitude grid. The data are computed as
‘‘blended SSTs’’ using the scheme of Reynolds (1988)
and are interpolated to the storm center. Should a storm
occur the first or last 5 days of a month, the SSTs are
averaged by the current and nearest month.

The synoptic wind data is obtained from BMRC for
1984 to July 1986 (Davidson and McAvaney 1981) and
from the European Centre for Medium-Range Weather
Forecasts when the BMRC data is not available. Both
synoptic data sources are on 2.58 grid spacing analyzed
at 0000 and 1200 UTC. The synoptic parameters are
interpolated to the storm center.

The satellite source is 3-h, 10-km resolution infrared
‘‘pixels’’ from three separate Geostationary Meteoro-
logical Satellites during 1983–86. Fitzpatrick (1996) ex-
plains the data processing procedure. The 512 3 512
pixels are centered on the best-track data and saved on
a grid as shown in Fig. 2. The number of IR pixels for
every brightness temperature (Tb) value was tabulated,
yielding a dataset with many potential applications. In
this study, a percentage of pixels colder than several Tb

values for different radii are investigated for a total of

30 combinations. Thirty combinations for each set of
6-, 12-, and 24-h running means are also computed.

In summary, the 4-yr regression sample contains 0000
and 1200 UTC best-track, synoptic, SST, and satellite
data with a sample size up to 600 cases. The satellite
data is stored in 30 radial and Tb combinations as ob-
served values, and as 6-, 12-, and 24-h running means.
This is the first TC dataset that combines climatology,
SST, synoptic, and satellite data.

Possible predictors

To assess which predictors are statistically significant,
one must first define a list of ‘‘potential predictors.’’
The diagnosis of significant predictors from a pool of
potential predictors is useful information by itself. For
a detailed description of each potential predictor, the
reader is referred to Fitzpatrick (1996). Since tropical
cyclogenesis and TC intensification are separate prob-
lems (Zehr 1992), only observations in which a TC has
achieved tropical storm strength (Vmax $ 35 kt) are in-
cluded. This is different from SHIPS, which includes
the depression stage of named TC cases.

1) CLIMATOLOGY

The climatology parameters are computed in terms
of storm location, storm speed, storm direction, and time
of year. Many are used in other climatology and per-
sistence regression models for intensity change forecasts
(Elsberry et al. 1975; Jarvinen and Neumann 1979; Chu
1994) and track forecasts (Neumann 1991). Although
parameters related to physical processes (such as wind
shear and convection) generally contain stronger fore-
cast signals, it is found that climatology explains a pro-
portion of the variance that these physical processes
cannot. The potential climatology predictors are shown
in Table 1. These include zonal (USPD) and meridional
storm motion (VSPD), storm speed (SPD), storm di-
rection (DIR), latitude (LAT), and longitude (LONG).
Since some weakening storms move rapidly during re-
curvature, or move slowly and upwell colder water un-
derneath (Shay et al. 1992), absolute storm speed anom-
aly SPDAN 5 |SPD 2 5| is investigated with respect
to the mean storm speed of 5 m s21 (Weatherford 1989).
Direction anomaly (DIRAN) with respect to a mean
west-northwest track is also a potential predictor. Julian
date anomalies with respect to the peak onset of rapid
deepeners (JDAN) are included using dates cited by
Mundell (1990).

Persistence with an ‘‘eye parameterization’’ (EYE-
PER) is also investigated as

1 if V $ 55 kt andmax
EYEPER 5 DV (t 5 212) . 0 (1)max


0 otherwise,
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TABLE 1. Potential climatology and persistence predictors after step
1 in the screening process. Details of predictors are contained in the
text. Only storms over open water with Vmax $ 35 kt are considered.
Variables that were significant at the 99% level after applying steps
2 and 3 in the stepwise procedure (for at least one of the forecast
intervals) are underlined.

Predictor Description

LAT Initial storm latitude
LONG Initial storm longitude
SPD Observed storm speed
SPDAN Absolute storm speed anomaly, defined as |SPD 2 5|

where the average storm speed is 5 m s21

DIRAN Direction anomaly, defined as the TC direction
anomaly from 3108

USPD Zonal component of storm motion
VSPD Meridional component of storm motion
JDAN Anomaly from peak onset of rapid deepeners, defined

as the absolute value of observed Julian day minus
climatological onset of rapid intensifiers

EYEPER Indicator variable that combines persistence with the
parameterization of a well-formed, contracting eye

POT MPI for a given SST minus initial intensity (Vmax);
MPI is averaged over the forecast track

TABLE 2. Potential synoptic regression predictors after step 1 in
the screening process. Details of predictors are contained in the text.
Only storms over open water with Vmax $ 35 kt are considered. Vari-
ables that were significant at the 99% level after applying steps 2
and 3 in the stepwise procedure (for at least one of the forecast
intervals) are underlined. Eddy flux calculations are not in storm-
relative coordinates, in contrast to Molinari and Vollaro (1990).

Predictor Description

VWS5 Magnitude of 200–850-mb vertical wind shear aver-
aged over a 58 circle and averaged over the fore-
cast track; a perfect shear forecast is assumed

REFCmid 200-mb REFC averaged between 78 and 108
REFCouter 200-mb REFC averaged between 118 and 158
PEFCmid 200-mb PEFC averaged between 78 and 108
PEFCouter 200-mb PEFC averaged between 118 and 158
VORT2 200-mb vorticity in a 2.58 circle over the center of

the storm
VORT5 200-mb vorticity in a 58 circle over the center of

the storm
VORTADV 200-mb vorticity advection over the center of the

storm

where DVmax(t 5 212) . 0 is the past 12-h intensity
trend. Equation (1) may be interpreted as follows: when
Vmax is less than 55 kt, TCs typically do not intensify
rapidly (Mundell 1990); therefore, other factors such as
weak wind shear must compensate for a weak TC to
intensify. Once an eye forms (typically at 55 kt), the
rate of intensification increases; however, this intensi-
fication depends on the recent intensity trend. A positive
trend generally indicates that the TC is early in its life
cycle and that the eyewall is contracting with time. As
shown by Weatherford (1989), proper consideration of
the TC life cycle is important. However, a negative ten-
dency indicates one or more of the following possibil-
ities: 1) the TC is in the later stages of its life cycle; 2)
the eye is weakening due to colder SSTs, high shear, or
other adverse effects; and/or 3) the eye is experiencing
a concentric eyewall cycle that is associated with tem-
porary weakening (Willoughby 1990).5

Merrill (1987) found that using a modified SST vari-
able that measures a TC’s maximum ‘‘potential’’ future
intensity change explains more variance than SST alone.
This variable is based on the MPI concept shown in
Fig. 1. DeMaria and Kaplan (1994a) derived the fol-
lowing empirical MPI relationship from a 31-yr sample
of Atlantic TCs:

MPI (kt) 5 A 1 B exp[2C(SSTo 2 SST)], (2)

where A 5 66.5 kt, B 5 108.5 kt, C 5 0.18138C21, and

5 The previous 12-h intensity change was also investigated for per-
sistence. The explained variance was similar to using EYEPER, but
the absolute errors, particularly during the transition from intensifi-
cation to weakening, were larger. This problem is associated with
autocorrelation, which occurs to some extent in all regression models
(Aczel 1989). The use of a ‘‘weaker’’ form of persistence by using
the dummy variable EYEPER reduces autocorrelation.

SSTo 5 30.08C. This research assumes Eq. (2) is valid
in the western North Pacific. Like SHIPS, MPI is av-
eraged along the future storm track during the forecast
interval (MPI) to account for SST variations along the
track. Best-track positions are used to determine the
storm positions during the forecast period. After com-
puting MPI, the modified SST variable that represents
a TC’s potential future intensity change (POT) is given
by (DeMaria and Kaplan 1994b)

POT 5 MPI 2 Vmax(t 5 0). (3)

Should POT become negative (rare), it is set to zero,
but this alteration does not change the explained vari-
ance.

2) SYNOPTIC WINDS

Several wind parameters are investigated, which some
researchers consider important to intensity change.
These include a variety of vorticity terms and eddy flux
terms as summarized in Table 2. Another investigated
parameter is vertical wind shear (VWS). The best pro-
cedure for measuring VWS has received little investi-
gation. DeMaria and Kaplan (1994b) found that aver-
aged shear explained slightly more variance of intensity
change than traditional ‘‘single-point’’ shear (VWSPT)
over the TC center (r 5 0):

VWSPT 5 {[Du(r 5 0)]2 1 [Dy(r 5 0)]2}1/2, (4)

where Du 5 u200 2 u850 and Dy 5 y 200 2 y 850 are zonal
and meridional wind differences between 850 and 200
mb. To investigate whether averaged VWS is a better
predictor, shear computed over a 5.08 circle (VWS5) is
computed as

VWS5 5 [(Du)2 1 (Dy)2]1/2. (5)

Denoting the radii r 5 2.58 and 5.08 with i 5 1 and 2,
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TABLE 3. Potential pixel count regression predictors after step 1 in
the screening process. Only storms over open water with Vmax $ 35
kt are considered. Variables that were significant at the 99% level
after applying steps 2 and 3 in the stepwise procedure (for at least
one of the forecast intervals) are underlined. One of the 30 PXRdTb
combinations was chosen, as was one of the DPXRdTb combinations.

Predictor Description

PXRdTb Percent of infrared pixels (PX) in a radial area (Rd)
colder than a specified brightness temperature
(Tb) at t 5 0; all Tb are negative; 30 combina-
tions are investigated

PXRdTb**2 Same as PXRdTb but squared; 30 combinations are
investigated

DPXRdTb 12-h trend of PXRdTb; 30 combinations are investi-
gated

MUND Ratio of PX0275 to PX2665
DIFFPX PX0270 minus PX2665

and circle angle f 5 08, 908, 1808, and 2708 with j 5
1–4, Du is computed as

2 41
Du9 5 Du(r 5 0) 1 Du (6)O O i, j[ ]9 i51 j51

and likewise for Dy . Averaged wind shear over a 2.58
area (VWS2) is also investigated. Like SHIPS, VWS is
averaged along the future storm track during the forecast
interval to account for shear changes along the track.
Best-track positions are used to determine the storm
positions during the forecast period. A ‘‘perfect-prog’’
of VWS is assumed.6

3) SATELLITE INFRARED DATA

Thirty combinations of radial areas and brightness
temperature Tb were processed. The radial areas are 08–
18, 08–28, 08–48, 08–68, 18–28, 28–48, and 28–68. The
value of Tb ranges from 2558 to 2808C in 58C incre-
ments. This full temperature range is explored for radii
within 28, while 2558 to 2658C is studied for radial
legs outside 28. The 30 combinations represent per-
centage of pixels in a radial area colder than a specified
Tb. As shown in Table 3, these are coded as PXRdTb,
where Rd is the radial increment and Tb is the brightness
temperature designation without the minus sign. For ex-
ample, the percentage of pixels in a 08–28 circular area
colder than 2658C is coded PX0265. Other investigated
parameters include squared pixel counts and 12-h pixel
count trends (DPXRdTb), which signify convective
change. Another potential predictor is the pixel count
difference (coded as DIFFPX) between cold inner-core
cloud tops (PX0270) and outer-core cloud tops
(PX2665), as suggested by Handel (1990), since the
gradient of Tb could be more important than just Tb.

6 Perfect-prog refers to the use of observed future fields rather than
forecast fields (which may be incorrect) in the model development
phase. It will give a very optimistic assessment of model performance.

Mundell’s (1990) scheme forecasts rapid intensifi-
cation onset within 12 h if the inner-core convection
(08–28 with Tb , 2758C) increases and/or the outer-
core convection (28–68 with Tb , 2658C) decreases
such that the ratio of inner- versus outer-core convection
reaches a specified threshold. A similar version of this
scheme (coded as MUND) is investigated as MUND 5
PX0275/PX2665. Should PX2665 be leas than 5%, it
is set equal to 5% to avoid an artificially high ratio.

3. Regression methodology

For this empirical scheme, the future change of max-
imum wind (DVmax) is chosen as the dependent variable
(consistent with SHIPS). For example, DVmax in a 24-h
period would be Vmax(t 5 24) 2 Vmax(t 5 0), and for a
48-h forecast it is Vmax(t 5 48) 2 Vmax(t 5 0). The
statistical procedure consists of several phases. First,
one needs to check if the least square assumptions are
met. Second, an approach in which a few ‘‘statistically
significant’’ predictors are chosen from many possible
predictors needs to be devised. In this approach, the
detrimental effects of artificial skill and multicollinear-
ity need to be considered. Third, the multiple regression
equation should be arranged so that the predictors
(which all contain different units) can be equally com-
pared against each other, and compared at different fore-
cast intervals.

a. Validity of linear least squares multiple regression

Certain criteria must be met before multiple regres-
sion least squares analysis can be applied (Aczel 1989).
The residuals should have a normal distribution, and the
variance of the residuals for each independent variable
should be constant. Histogram plots of normalized re-
siduals revealed a Gaussian distribution, and residual
plots for all predictors showed relatively uniform scatter
(constant variance) of the regression errors. Hence, mul-
tiple regression is a valid technique for investigating the
relationship between TC intensity change and the pos-
sible predictors.

b. Screening of potential predictors

The selection of a large number of potential variables
for statistical significance testing is a delicate problem.
Large numbers of available predictors can result in ar-
tificial skill (Shapiro and Neumann 1984; Mielke et al.
1996). Merrill (1987) succinctly explains that for 20
potential predictors ‘‘which were actually random vari-
ables, one (variable) would be expected to test signif-
icant at the 95% level by chance alone.’’ The inclusion
of many potential variables in the screening process also
increases the chance that some will be correlated with
each other—a problem called multicollinearity. Multi-
collinearity inflates the explained variance, results in
counterintuitive regression coefficients, and makes as-



DECEMBER 1997 833F I T Z P A T R I C K

TABLE 4. Normalized regression coefficients for the combined cli-
matological, persistence, satellite, and synoptic data for the TIPS
forecast periods of 12, 24, 36, and 48 h. Variables not important at
the 99% level are labeled NA (not applicable). Also shown is each
predictor’s mean value for the forecast periods. The units are m s21

for POT, VWS5, and VSPD; percent for PX0455 and DPX0165; and
8E for LONG. Here, R2 (the coefficient of determination) is the percent
of the total variance explained by the regression and n is the sample
size for 1984–86.

Variable coef-
ficients (ci) 12 h 24 h 36 h 48 h

POT
PX0455
EYEPER
VWS5
DPX0165
VSPD
LONG

10.46
10.27
10.31
20.18
10.16
10.09

NA

10.60
10.30
10.28
20.26

NA
10.14

NA

10.67
10.30
10.25
20.29

NA
10.13

NA

10.68
10.26
10.21
20.27

NA
NA

10.10

Variable mean
(x̄i) 12 h 24 h 36 h 48 h

POT
PX0455
EYEPER
VWS5
DPX0165
VSPD
LONG

38.9
24.6
0.37
8.5

20.9
2.2
NA

38.8
25.5
0.38
8.4

NA
2.0

NA

38.9
26.2
0.39
8.4

NA
1.8

NA

39.0
26.8
0.40
8.5

NA
NA

137.3

R2 (%)
n

46.5
611

52.2
530

59.0
459

60.0
397

sessing the individual contributions of the predictors to
the dependent variable difficult (Aczel 1989). The effect
of multicollinearity and artificial skill is reduced by a
three-step process.

The first step involved eliminating some repetitious
variables, such as only including one wind shear variable
(VWS5, which explains more variance than VWSPT),
resulting in the following 110 potential variables: LAT,
LONG, SPD, SPDAN, DIRAN, USPD, VSPD, JDAN,
EYEPER, POT, VWS5, REFCmid, REFCouter, PEFCmid,
PEFCouter, VORT2, VORT5, VORTADV, 30 PXRdTb’s,
30 PXRdTb**2’s, 30 DPXRdTb’s, MUND, and DIFFPX.

Stepwise regression with a ‘‘backward glance’’ then
selects the optimum number of significant predictors
using a significance value of 99%. After applying step-
wise regression, some of the chosen predictors contained
correlations of 0.5 or higher with each other. Step 3
involves a ‘‘filtering process’’ in which multicollinearity
and artificial skill is further reduced by choosing one
of the correlated variables and removing the rest. Then
stepwise regression is run again. The reader is referred
to Fitzpatrick (1996) for more details about the three-
step process.

c. Normalization of regression coefficients

It is desirable to compare the chosen predictors to
ascertain their importance, yet this is difficult to accom-
plish when the predictors and the dependent variable
contain different units. Therefore, a normalization pro-
cedure is needed for equal comparison between the vari-
ables. Denoting s as the standard deviation of a variable,
y 5 DVmax x as the predictor mean, and y as the mean
DVmax a number k statistically significant predictors are
normalized by the following regression:

k

(y 2 y)/s 5 c (x 2 x )/s . (7)Oy i i i i
i51

The advantage of this approach is that the importance
of a predictor may be assessed by comparing regression
coefficients ci between different variables and different
forecast intervals (DeMaria and Kaplan 1994b), and that
the y intercept becomes zero (Edwards 1984). As a sim-
plistic example, if ci 5 0.5 for one variable and if (xi

2 xi)/s i 5 1.0, then that independent variable’s con-
tribution to intensity change will be one-half of DVmax’s
standard deviation plus y. Should that same variable’s
ci be larger for 48-h regression, then that variable is
more important for 48-h forecasts than 24-h forecasts
(relative to other chosen predictors).

In addition, xi may be interpreted (to a first approx-
imation) as a ‘‘threshold’’ value that distinguishes be-
tween intensification and weakening. Since y is small
in this dataset (it ranges from 1 to 3 m s21), for a pos-
itively correlated predictor (ci . 0), xi . xi is associated
with intensification, and vice versa for xi , xi. Similarly,
if a predictor is negatively correlated (ci , 0), above-

(below-) average values of xi correspond to weakening
(intensification).

4. Regression results

a. The significant predictors

After the filtering and stepwise procedures are com-
pleted, five to six significant predictors are chosen. Table
4 shows the normalized regression coefficients ci from
Eq. (7) for the selected predictors during the 12-, 24-,
36-, and 48-h forecast intervals. Correlation matrix cal-
culations, and a quantity called the ‘‘variance inflation
factor’’ (which measures the inflation of R2 due to mul-
ticollinearity), both indicated that multicollinearity was
small. Therefore, each predictor contains a unique re-
lationship to DVmax.

The predictors in Table 4 are ordered by the mag-
nitude of the regression coefficient. The four most crit-
ical predictors are (listed in importance): POT, PX0455,
EYEPER, and VWS5. This shows that including sat-
ellite information is a crucial component in forecasting
intensity change. The fact that the SST term POT term
is most important is not surprising, but now its signif-
icance has been quantitatively measured. To graphically
demonstrate these magnitude differences, bar plots of
ci are shown for the 24-h predictors (Fig. 3) and the 48-
h predictors (Fig. 4).

POT is 1.5 times more important than EYEPER and
PX0455 at 12 h, and 2 to 3 times more important than
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FIG. 3. Normalized regression coefficients for 24-h TC intensity
change for the statistically significant variables. The important vari-
ables are potential intensification as a function of SST and current
intensity (POT), percentage pixel counts within 48 in which Tb ,
2558C (PIX), persistence with an eye parameterization (PER), 58
averaged vertical wind shear (SHR), and meridional storm motion
(VSM). The variance explained is 52%.

FIG. 4. Normalized regression coefficients for 48-h TC intensity
change for the statistically significant variables. The important vari-
ables are POT, PIX, PER, SHR, and longitude (LON). The variance
explained is 60%.

the other parameters. POT becomes more important for
the longer forecast times (from 10.46 at 12 h to 10.68
at 48 h), and the coefficient is 2 to 5 times larger than
other predictors. In general, it can be stated that TC
intensification based on potential intensity [MPI(SST)
2 Vmax] is 2 to 3 times more important than any other
predictor. DeMaria and Kaplan (1994b) reached similar
conclusions with SHIPS, although TIPS’s coefficients
tend to be larger. This suggests that POT might be more
important in the western North Pacific than the Atlantic.
However, DeMaria and Kaplan used climatological
SSTs rather than observed SSTs, which could also re-
duce ci.7

However, in general SSTs should be not interpreted
as the most important predictor for intensifying TCs
because the western North Pacific Ocean is uniformly
288–298C south of 258N. The skill of POT may be based
upon the climatology of TC intensification in that region
instead, in which TCs generally develop along their
track and are less likely to intensify as the MPI is ap-
proached. Then, as a TC moves toward colder water,
they tend to parallel the MPI threshold (M. Landers
1997, personal communication).

The importance of PX0455 does not change much
with the forecast interval, and it is the second most
important predictor except for the 12-h eye/persistence
term (which becomes less consequential with time). It
is hypothesized that convection out to 48 embodies sev-
eral influential processes, which relate to intensity
change. First, it is a measure of deep inner-core con-

7 SHIPS began using weekly SST analyses in 1996 (M. DeMaria
1997, personal communication).

vection (within 08–28), which concentrates cyclonic vor-
ticity through conservation of absolute angular momen-
tum processes. Second, it is a measure of cloud sym-
metry; asymmetric clouds or lack of large-scale cloud-
iness are signs of an unhealthy storm, usually due to an
unfavorable environment (shear or dry air intrusion) or
due to movement over colder water. Third, the ‘‘spread-
ing out’’ of cloudiness is a sign of a vigorous secondary
circulation. Dvorak (1984) shows that a central dense
overcast tends to form right before hurricane intensity
is reached and persists during the storm’s evolution as
long as other conditions are favorable. In addition to
these physical processes, the highest correlation to 48
may also be due to errors in the location of the TC
center.8

It should be noted that mature, steady-state TCs may
also contain deep symmetric convection and a vigorous
transverse circulation. Such storms are approaching
their MPI or are experiencing another influence that is
restricting their development but not damaging it (such
as moderate wind shear). The intensity change predic-
tors must be considered collectively, not by themselves.

Wind shear averaged over a 58 area is equally as
important as convection from 24 to 48 h. This suggests
that shear on the edge of a TC apparently affects in-
tensity change. It may also signify that a TC is about
to enter a 200-mb westerly (or strong easterly) wind
regime, or that westerly (or strong easterly) winds are
about to traverse over a TC. Averaging also reduces any
erroneous wind observations, bogused vortexes asso-
ciated with some models, and other large-scale TC cir-
culations from contaminating the shear calculations. It

8 Sensitivity tests were performed with other pixel count variables
with different Tb radii to confirm that PX0455 was the best choice.
These experiments also showed running means explained less vari-
ance than observed pixel counts. These results, as well as sensitivity
tests with wind shear variables, are discussed in the appendix.
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TABLE 5. Partial correlations for the TIPS forecast periods of 12,
24, 36, and 48 h. Partial correlations measure how much variance is
explained by one predictor when the other predictors are ‘‘held con-
stant.’’ Variables not important at the 99% level are labeled NA (not
applicable).

Partial
correlations 12 h 24 h 36 h 48 h

POT
PX0455
EYEPER
VWS5
DPX0165
VSPD
LONG

10.50
10.33
10.37
20.22
10.20
10.11

NA

10.63
10.39
10.36
20.33

NA
10.18

NA

10.69
10.42
10.34
20.39

NA
10.19

NA

10.71
10.37
10.31
20.38

NA
NA

10.16

is unknown, however, if 58 averaged shear is the best
shear variable for current models that have better res-
olution than the mid-1980s models. Elsberry and Jef-
fries (1996) have also shown that distinguishing be-
tween ‘‘deep’’ and ‘‘shallow’’ upper-tropospheric west-
erlies gives a better shear assessment, which Eq. (5)
cannot compute.

Other predictors are only significant at certain fore-
cast times. At 12 h, the DPX0165 term is the fifth most
important term. Since DPX0165’s components are the
12-h tendency of Tb , 2658C in a 08–18 area, it is a
measure of deep inner-core convective change. The oth-
er two predictors are climatology terms. At 48 h, the
storm longitude is a useful intensity change indicator.
This is opposite of SHIPS, which finds LONG only to
be important at 12 and 24 h, and an indication that the
Pacific and Atlantic basins contain different climatol-
ogies.

A surprising finding is that the other climatology vari-
able, meridional storm speed (VSPD), is a significant
and positive contributor to intensity change. This some-
what bewildering discovery is contrary to SHIPS, which
finds VSPD to be insignificant in the Atlantic. Once
again, the basins exhibit different climatology. The rea-
son for this result is unclear, but some tentative expla-
nations are offered below.

According to M. Landers (1997, personal commu-
nication), in the western North Pacific during the sum-
mer, northward motion does not bring TCs over signif-
icantly colder water until 258N, and they often do not
encounter shear until about 308N. TCs may also form
fairly close to the equator, occasionally even near 58N,
and thus low-latitude TCs can contain a poleward trans-
lation component for a large distance. It is also possible
the reported Vmax contains the storm motion component,
and in some accelerated recurving situations may
strongly counteract the weakening influence of colder
SSTs and wind shear.

To complement these findings, partial correlations for
each significant variable are shown in Table 5. The par-
tial correlation (rp) measures how much variance is ex-
plained by one predictor when the other predictors are
‘‘held constant’’ (Edwards 1984). The same patterns in
Table 4 persist in Table 5. This alternate perspective
shows that, for the same persistence, convection, wind
shear, and climatology values, a change in POT along
the tracks will have the most profound effects, with rp

ranging from 0.5 to 0.71 (25%–49% variance). Simi-
larly, for other predictors held fixed, the variance ex-
plained by EYEPER is about 9%–13%, for PX0455
11%–18%, and for VWS5 5%–15% while other vari-
ables affect the partial variance less.

The total variance (R2) of intensity change explained
by TIPS is 46% at 12 h and increases with each forecast
interval to 60% (Table 4). Computations based on the
research of Mielke et al. (1996) show that R2 is close
to the population variance (not shown) and is represen-
tative of the true explained variance. The variance in-

crease is due to several reasons. First, this variance in-
crease with forecast time represents the growing im-
portance of POT along the storm track in explaining
DVmax. Second, this increase might result from the 5-kt
discretization of Vmax the best-track dataset (DeMaria
and Kaplan 1994b). For intensity change in 12 h sy is
10 kt and increases to 28 kt at 48 h. However, the mean
DVmax only slightly increases from 1.5 kt to 5 kt, re-
spectively. This 5-kt truncation makes explaining R2

more difficult at shorter forecast intervals since sy is
within the noise level.9 Finally, the lower R2 may in-
dicate that that inner-core processes that cannot be re-
solved on the synoptic scale complicate short-term in-
tensity changes.

A discouraging finding is that 55% to 40% of the
variance is still unexplained by TIPS. This accentuates
the difficulty of forecasting intensity change. There is
still much room for improvement in TC intensity fore-
casting. However, the utilization of quantitative satellite
data seems promising, and its potential will become
more evident as this paper continues.

Furthermore, multiple regression is a better approach
than single variable linear regression. Several compo-
nents must be considered when making a TC intensity
forecast. To highlight these differences, Table 6 shows
the variance explained in a linear, one-variable regres-
sion model (r2). The variance explained by a single
variable is astonishingly low. Even POT only explains
15%–38% by itself. The other variables explain even
less variance. In fact, some values of r2 are so small
(such as for LONG, VSPD, EYEPER, and PX0455) they
would typically be dismissed as unimportant if consid-
ered by themselves.

b. Threshold values

Table 4 shows the mean predictor value xi from Eq.
(7), which can be interpreted (to a first approximation)

9 The value of sy is slightly smaller in the Atlantic than the western
North Pacific. This implies that R2 could be a little higher in TIPS
than SHIPS since there is more DVmax variance to explain in the
western North Pacific (M. DeMaria 1994, personal communication).
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TABLE 6. Variance explained in a linear, one-variable regression
model for the forecast periods of 12, 24, 36, and 48 h. Whether a
variable is a positive or negative correlation is indicated. Variables
not important at the 99% level in the multiple regression analysis are
labeled NA (not applicable).

Single predictor
variance 12 h 24 h 36 h 48 h

POT
PX0455
EYEPER
VWS5
DPX0165
VSPD
LONG

115.4
110.8
111.2
29.9
19.2
12.8
NA

123.7
17.9
17.2

211.1
NA
11.3
NA

132.1
15.6
14.1

212.9
NA
10.9
NA

138.1
13.0
11.6

213.0
NA
NA
11.4

TABLE 7. Normalized predictors (and their true numerical values in parentheses) for different intensity regimes (kt) during the 24-h periods
for 1984–86. Here, ‘‘P’’ denotes a positive contribution to intensification for that stratification, while ‘‘N’’ denotes a negative contribution;
‘‘Z’’ denotes zero contribution, defined as when the normalized standard deviation is less than the absolute value of 0.2. Details are contained
in the text. The units are m s21 for POT, VWS5, and VSPD, while PX0455 is in percent.

Variables DV $ 25 20 $ DV $ 10 5 $ DV $ 25 210 $ DV $ 220 DV # 225

POT
PX0455
EYEPER
VWS5
VSPD

10.38 (44.2) P
10.78 (37.9) P
10.51 (0.63) P
20.33 (7.0) P
20.04 (1.8) Z

10.54 (46.6) P
10.03 (26.0) Z
10.07 (0.41) Z
20.28 (7.2) P
20.04 (1.9) Z

10.04 (39.3) Z
20.12 (23.7) Z
10.02 (0.39) Z
10.01 (8.5) Z
20.07 (1.8) Z

20.54 (31.0) N
20.27 (21.3) N
20.32 (0.23) N
10.25 (9.6) N
10.00 (2.0) Z

21.33 (19.6) N
20.19 (22.6) N
20.26 (0.26) N
10.90 (12.5) N
10.53 (3.2) P

as the threshold value for intensification and for weak-
ening. Unlike ci, these do not vary much for different
forecast intervals. Some interesting issues emerge. First,
the 58 averaged wind shear threshold of 8.5 m s21 is
less than the 12.5 m s21 threshold for ‘‘point shear’’
used by Zehr (1992) in his tropical cyclogenesis study.
Zehr’s threshold was determined observationally and
was applied to genesis. The SHIPS’s threshold shear
value is virtually the same 8.5 m s21 as TIPS’s (M.
DeMaria 1995, personal communication). This suggests
that the 8.5 m s21 criteria for TC intensity change is
probably representative of all tropical basins.

Second, the POT threshold of 39 m s21 is a statement
that most storms do not reach their MPI. However, this
also presents forecast problems. Since TCs rarely reach
their MPI, TIPS underforecasts TCs approaching the
MPI limit because POT skews DVmax toward lesser val-
ues unless the other terms strongly contribute.

c. Predictor contributions to intensity change
stratifications

Another feature that can be studied is how a predictor
contributes to different magnitudes of DVmax. To study
these stratifications, DVmax are divided into five cate-
gories: 1) fast intensifying, 2) slowly intensifying, 3)
quasi-steady state, 4) slowly weakening, and 5) fast
weakening. The magnitudes of DVmax that qualify for
these categories have been intuitively chosen and are
dependent on the forecast interval of interest. The con-
tributions of the predictors are measured in three ways:

1) average predictor value for a class (designated as
xc);

2) average normalized standardized deviation ([xc 2
x]/s) for a class, designated as NSD; and

3) whether xc is a positive influence [P; (sign of re-
gression coefficient) 3 NSD $ 0.2], negative influ-
ence [N; (sign of regression coefficient) 3 NSD #
20.2], or ‘‘zero’’ influence (Z; NSD , |0.2|).

This methodology is shown in Tables 7 and 8 for 24
and 48 h, respectively.

One would expect that, on average, there would be
positive contributions to the intensification classes, and
negative influences on the weakening classes, with zero
inducements for the quasi-steady-state classes. Further-
more, one would expect large NSD differences between
rapidly and slowly developing classes. Indeed, these are
the general patterns, but there are some notable excep-
tions that reveal much about TC intensity change.

Note that the POT NSD and xc values are not very
different between the fast and slow intensification class-
es. For example, at 24 h (Table 7) the fast and slow
POT xc values are 44.2 and 46.6 m s21, respectively.
Since average POT is not very different between the
fast and slow developing cases, POT cannot distinguish
whether a TC will develop rapidly or slowly, even
though it is a positive contributor to both classes. Bar
graphs are plotted in Fig. 5 for the 24-h classes to high-
light this point, with the 24-h POT sample mean shown
as reference.

In stark contrast, the average pixel count values are
very different between fast and slow intensification
cases. At 24 h, the NSD for PX0455 is 0.75 greater (xc
5 37.9% compared to 26%), and in fact, on average
PX0455 makes zero contribution to intensity change for
the slow class. This trend is evident for the other forecast
periods as well. Therefore, including pixel count infor-
mation can distinguish whether a TC will develop at a
fast or slow rate, and is a valuable component of TIPS.
Figure 6 shows bar plots for the 24-h PX0455 classes,
with the sample mean shown as reference. It is clear
that abundant buoyancy is an integral part in fast de-
veloping TCs, while slower developing storms contain
less buoyancy on average.

Opposite conclusions are reached for the slow and
fast weakening cases. While both predictors contribute
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TABLE 8. As in Table 7 but during the 48-h periods for 1984–86. The units are m s21 for POT and VWS5, percent for PX0455, and 8E
for LONG.

Variables DV $ 45 40 $ DV $ 20 15 $ DV $ 215 220 $ DV $ 240 DV # 245

POT
PX0455
EYEPER
VWS5
LONG

10.69 (49.2) P
10.69 (37.6) P
10.23 (0.51) P
20.53 (6.4) P
10.41 (143.2) P

10.56 (47.2) P
10.04 (27.5) Z
10.05 (0.42) Z
20.35 (7.1) P
10.04 (137.9) Z

10.05 (39.8) Z
20.15 (24.4) Z
10.02 (0.41) Z
10.06 (8.7) Z
20.09 (136.1) Z

20.84 (26.7) N
20.04 (26.2) Z
20.14 (0.33) Z
10.47 (10.3) N
20.12 (135.6) Z

22.1 (7.8) N
20.18 (24.0) Z
20.48 (0.17) N
10.66 (11.1) N
10.27 (141.3) N

FIG. 6. Average PX0455 values for different 24-h DVmax classes.
Numbers on the bars are NSDs defined by (xc 2 x)/s, where xc is
the average PX0455 value for each class. The overall average (x,
denoted by the dashed line) is shown for comparison.

FIG. 5. Average POT values for different 24-h DVmax classes. Num-
bers on the bars are normalized standard deviations (NSD) defined
by (xc 2 x)/s, where xc is the average POT value for each class.
The overall average (x, denoted by the dashed line) is shown for
comparison.

negatively to the weakening classes, POT is the key
predictor for differentiating between a fast and a slow
disintegrating TC; PX0455 does not make this distinc-
tion. The average NSD POT difference between fast
and slow weakening regimes is dramatically different,
with differences of 0.57 for 12 h (20.47 in slow weak-
ening class compared to 21.04 in fast weakening class;
not shown) and steadily increasing with the forecast
interval to a NSD difference of 1.26 at 48 h in Table 8
(20.84 in slow weakening class compared to 22.1 in
fast weakening class).

The binary eye/persistence term makes a valuable dis-
tinction to all the fast and slow classes at 12 h (not
shown) and the weakening classes at 48 h. However,
EYEPER suffers oscillatory problems at other periods,
as is evident from the fact that the class mean hovers
between 0.4 and 0.5. It is because of this oscillatory
fashion that EYEPER drops in importance from second
to fourth place after 24 h and only makes slight con-
tributions in the extreme DVmax classes afterward.

Wind shear adheres to the same trend as POT, in that
the mean values for the fast and slow intensification
classes are not acutely different, yet the NSD is mark-
edly different between the fast and slow weakening
classes. The following NSD values are observed for

slow and fast weakening, respectively: 0.21 compared
to 0.95 at 12 h (not shown), 0.25 compared to 0.90 at
24 h, 0.38 compared to 0.93 at 36 h (not shown), and
0.47 compared to 0.66 at 48 h. Therefore, while low
shear is a vital component for intensification, on average
it does not distinguish between fast and slow developing
TCs. On the other hand, shear is a crucial parameter for
differentiating between fast and slow weakeners on av-
erage.

The pixel count trend information (DPX0165) for 12-
h forecasts contain the same NSD values for fast and
slow developing classes (not shown). But, the slow and
fast weakening classes exhibit markedly different NSD
values, which corresponds to an average 12-h decrease
of 7% and 21%, respectively. On average, the pixel
count trend of deep inner-core convection does not dif-
ferentiate between fast and slow 12-h developers, but
does convey knowledge about when fast Vmax decrease
might occur. If PX0165 has decreased by at least 20%
in the past 12 h, then Vmax might decrease by 15 kt or
more in the next 12 h.

The two climatology predictors also exhibit infor-
mative trends once stratified. The meridional storm mo-
tion only contributes significantly in the fast weakening
class. For 48-h forecasts the initial storm longitude only
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contributes significantly to fast developers, with a mean
location of 143.28E.

In summary, except for EYEPER at 12 and 24 h, the
observed pixel count information is the critical element
in differentiating fast and slow developing TCs. Cer-
tainly warm SSTs and weak shear provide the necessary
environment for fast development, but only after intense
convection over a large circular area has been generated
will accelerated development occur. Abundant buoy-
ancy (convective bursts) indeed appears to be the re-
quired agent for fast development. On the other hand,
cold SSTs and strong shear appear to be the main pro-
cesses by which fast TC dissipation occurs; a finding
that comes as no surprise.

d. Evaluation of TIPS intensity forecasts

The relative errors (biases) and absolute errors are
analyzed on the dependent (1984–86) and independent
(1983) dataset for TIPS and compared against JTWC’s
24-h and 48-h official forecasts. (JTWC does not per-
form 12- or 36-h forecasts). These errors are tabulated
for different DVmax classes and as an overall average.
Relative error is computed as DVmax (observed) minus
DVmax (forecast).

Table 9 shows the 24-h relative and absolute errors
for 1984–86 and 1983. Both JTWC and TIPS suffer the
same forecast biases in 1984–86. Fast intensification is
underforecast, slow intensification and quasi-steady
state is generally well anticipated (residuals 3 kt or less),
DVmax (forecast) is less in magnitude than DVmax (ob-
served) for slow weakening, and much less in magnitude
for fast weakening. On the independent dataset, this
general trend in the biases continues, although TIPS
fairs better in the fast intensification, slow intensifica-
tion, and fast weakening classes,—and worse in the oth-
er classes—than JTWC. In terms of absolute error,
JTWC and TIPS are equal for fast intensification in
1984–86, and JTWC is slightly better in 1983 for the
slow weakeners. Otherwise, all other parameters in
1984–86 and 1983 show less absolute error for TIPS
despite its biases.

In general, the regression errors are fairly high but
are 19% less on average compared to JTWC, 35% less
for the slower intensifiers, and 20%–23% less for fast
categories of DVmax. On the other hand, TIPS faired
worse than JTWC for the slow weakeners in 1983, in-
dicating that TIPS often misses the transition from an
intensifying to a weakening storm. The persistence term
is partially responsible for this error.

The same error patterns persist at 48 h, but the error
differences are larger at 48 h, as indicated in Table 10.
This does not suggest that TIPS’ perfect-prog 48-h fore-
casts have more skill than the 24-h version, but reflects
that JTWC’s 48-h forecasts contains more errors due to
uncertainty in track and shear predictions than their 24-
h forecasts. However, the fact that the bias is 17 kt less
for both 1983 fast and slow intensifying cases, with a

4.3-kt bias for the slow intensifier, is very encouraging.
The errors are still unsatisfactory, but since it has been
demonstrated that the satellite information is a key fac-
tor in discriminating between fast and slow intensifiers,
future error reductions may be possible using satellite
information in similar schemes.

e. Overall assessment of TIPS compared to JTWC

It cannot be claimed that TIPS outperformed JTWC.
TIPS is developed assuming a perfect-prog of storm
motion and shear. Certainly some of the JTWC errors
resulted from bad track forecasts and to uncertainty in
the wind shear evolution. TIPS is also developed on
postprocessed (best-track) data. Sometimes the position
and motion of a TC is uncertain, and operational data
may contain errors that affect the forecaster’s judgment.
However, DeMaria and Kaplan (1994b) compared
SHIPS’s results developed on track forecasts based on
Vic Ooyama’s nested barotropic hurricane track fore-
casting model (VICBAR) to those developed on best-
track data and found little difference in the forecast
errors. They reasoned that since MPI and shear are av-
eraged along the track, the impact of track errors is
reduced. Shear and MPI are also computed this way in
TIPS.

Forecasting wind shear is a daunting problem, though.
The tropical upper-troposphere is subject to a variety of
westerly wind intrusions from the midlatitudes and
trough interactions, which are difficult to predict. Un-
fortunately, models offer little wind shear guidance. Nu-
merical model forecasts of 200-mb tropical winds can
be erroneous, especially in the vicinity of the Tropical
Upper-Tropospheric Trough (TUTT), which tends to be
artificially weakened in some models (Fitzpatrick et al.
1995).10 Another complicating factor is that TCs can
create a region of low shear with a well-developed up-
per-level anticyclone that can drive away a high shear
environment, and this situation cannot be easily antic-
ipated (Elsberry and Jeffries 1996). Because of these
reasons, shear is often inaccurately predicted. Using per-
fect-prog shear will give an overestimate of TIPS’s true
forecast skill.

Nonetheless, TIPS may be competitive with JTWC
since all the errors were similar or less in magnitude.
The intensification classes where the error differences
are statistically significant are shown in Tables 9 and
10, indicating where potentially the biggest gains could
be attained.11 TIPS can possibly provide forecast guid-

10 Fitzpatrick et al. (1995) offer tips on predicting wind shear near
a TUTT.

11 This is misleading, though, because in addition to the other prob-
lems mentioned in this section, t numbers are inflated by autocor-
relation as well.
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TABLE 9. Average 24-h errors (in kt) for the regression model and JTWC forecast for the dependent dataset (1984–86) and independent
dataset (1983). The errors are stratified by intensity change regimes. Number of cases for all stratification is also shown. Since JTWC released
fewer forecasts than was empirically analyzed, there are fewer cases in the error analysis (514) than in Table 4 (530). Error differences
significant at the 90%, 95%, and 99% levels are indicated as *, **, and ***, respectively. Errors are computed as DVmax (observed) minus
DVmax (forecast). TIPS is developed on perfect-prog forecasts of shear and track, and on postprocessed data that contain some autocorrelation,
so this table does not imply that TIPS can outperform JTWC.

Years DV $ 25 20 $ DV $ 10 5 $ DV $ 25 210 $ DV $ 220 DV # 225 Overall

Mean 24-h relative errors
1984–86 TIPS
1984–86 JTWC

116.1
116.3

13.8*
12.1

22.1
22.9

27.2
26.7

213.4
213.0

0.0
20.6

1983 TIPS
1983 JTWC

121.1
125.5

12.0***
18.7

26.2**
0.7

28.8**
24.6

214.2
217.7

21.6***
13.2

Mean 24-h absolute errors
1984–86 TIPS
1984–86 JTWC

16.7
16.7

7.2**
8.8

6.6***
10.5

9.3*
11.0

13.4
15.3

9.2***
11.3

1983 TIPS
1983 JTWC

21.1**
27.5

8.4***
13.0

9.0
11.8

11.3
10.5

14.2
17.7

11.8***
14.6

No. of cases
1984–86 cases
1983 cases

66
20

146
35

148
28

119
39

35
13

514
135

TABLE 10. As in Table 9 but for 48-h errors. TIPS is developed on perfect-prog forecasts of shear and track, and on postprocessed data
that contain some autocorrelation, so this table does not imply that TIPS can outperform JTWC.

Years DV $ 45 40 $ DV $ 20 15 $ DV $ 215 220 $ DV $ 240 DV # 245 Overall

Mean 48-h relative errors
1984–86 TIPS
1984–86 JTWC

127.0**
131.8

17.7
16.0

24.6***
28.9

210.5
29.4

210.2**
223.3

0.0**
21.7

1983 TIPS
1983 JTWC

130.5***
147.1

14.3***
121.2

26.8**
21.2

212.9
27.9

221.2*
235.8

21.4***
16.8

Mean 48-h absolute errors
1984–86 TIPS
1984–86 JTWC

27.0**
32.1

10.8***
15.0

11.4***
17.0

14.5
16.8

13.2**
25.0

13.4***
18.1

1983 TIPS
1983 JTWC

31.1***
47.1

10.5***
23.1

19.1
21.6

16.5
15.4

21.2*
35.8

18.4***
25.0

No. of cases
1984–86 cases
1983 cases

36
21

97
21

159
32

71
24

12
6

375
97

ance, especially when its biases are understood by the
forecaster. Furthermore, besides developing a forecast
scheme, an equally important scope of this research is
to better understand TC intensity change, which is best
analyzed using perfect-prog.

f. Comments on insignificant predictors

While the significant predictors are of most concern
in this paper, it is equally illuminating to note which
predictors were not significant, especially since many
of the unchosen potential predictors are considered to
be very important to TC intensity change by some re-
searchers. For example, the upper-level forcing terms
REFC and 200-mb vorticity advection (VORTADV)
were considered statistically insignificant in the regres-
sion analysis. This concurs with the discussion of Mer-
rill (1988) and many operational forecasters who state
that any positive benefits associated with these terms

usually are overwhelmed by the corresponding negative
effects of vertical wind shear that often accompanies a
trough. Statistically insignificant variables are shown in
Tables 1–3 without underlines.

5. Case studies

To complement these findings, case studies of ty-
phoons will be shown with the emphasis on 24-h in-
tensity change. As stimulation for discerning why some
TCs intensify at a fast rate, why some intensify at a
slower rate, and why some do not develop much at all,
a fast developer (Lola 1986) will be investigated first
(Fig. 7). As a reference frame for this and other dis-
cussions in this section, the time series are plotted from
day 0 of the TC (usually its depression phase) with the
date shown in the figure. MPI and Vmax are plotted in
0.25-day (6-h) increments. VWS5 and PX0455 are plot-
ted in 0.5-day (12-h) increments. Threshold values for
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FIG. 7. Time series of MPI and Vmax (kt, top), PX0455 with its threshold value for reference (%, middle), and
VWS5 with its threshold value for reference (m s21, bottom) for Typhoon Lola (1986).

VWS5 and PX0455 from Table 4 are also included in
the plots for reference.

Typhoon Lola experienced fast deepening starting day
1 since all the conditions were extremely favorable:
VWS5 approached zero, PX0455 remained high at 62%
(2.3 NSD), warm SSTs of 298C supported large potential
for growth (POT 5 44 m s21), and a history of devel-
opment (persistence) with eye formation initiated when
Vmax became faster that 55 kt. In fact, Lola managed the
rare feat of reaching its MPI due to the favorable en-
vironment. Lola then began to weaken on day 3 as the
water became cooler (note decrease in MPI in Fig. 7)

and shear increased with a marked decrease in convec-
tion.

Of course, fast intensification can be suppressed even
with strong convective signals if the shear increases, as
in the case of Hope (1985) in Fig. 8. Hope was primed
for fast intensification on days 1–2 with all factors high-
ly favorable. But on days 2.5–3.5, VWS5 became great-
er than 20 m s21, and intensification halted. Then Hope
moved over colder waters with marginally unfavorable
shear conditions and dissipated.

To further emphasize the importance of convection, Fig.
9 shows a case (Pat 1985) where the shear was very low
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FIG. 8. As in Fig. 7 but for Typhoon Hope (1985).

(ø3 m s21) throughout the life cycle, but never developed
much convection even though SSTs are 288–28.58C, and
as a result intensified at a slow rate over a 3-day period
to a maximum of 95 kt on day 3.5. Pat then weakened as
it made landfall over southwestern Japan.

Finally, if a storm encounters strong shear after gen-
esis such that no convection persists, little intensification
will ever occur, as shown for Skip (1985) in Fig. 10.
Skip persists due to warm SSTs of 28.258–28.58C, but
except for day 3.5 encounters shear much greater than
the threshold of 8.5 m s21. As a result, convection al-
ways remained below the intensification threshold.

6. Summary

A multiple regression scheme with intensity change
DVmax as the dependent variable was developed for the
western North Pacific Ocean. The new scheme is titled
the Typhoon Intensity Prediction Scheme (TIPS). Out
of 110 possible climatology, persistence, satellite, and
synoptic predictors, stepwise regression was applied
with a ‘‘filtering’’ procedure and a strict 99% signifi-
cance level to reduce artificial skill and multicollinear-
ity. This methodology yielded five to six final predictors
for forecast periods of 12, 24, 36, and 48 h.
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FIG. 9. As in Fig. 7 but for Typhoon Pat (1985). Here, ‘‘L’’ denotes land interaction on day 4.

The significant predictors for all forecast periods are
1) an SST term based on the storm’s ‘‘potential’’ for
intensification (POT), which is averaged along the fu-
ture storm track; 2) a binary 12-h persistence term with
an ‘‘eye parameterization’’ (EYEPER); 3) pixel count
terms within 48; and 4) wind shear in a 58 circle averaged
along the future storm track. In addition, the previous
12-h convective trend (Tb , 2658C) within 18 is sig-
nificant for 12-h forecasts (DPX0165), meridional storm
motion (VSPD) is significant except for 48-h forecasts,
and storm longitude is important for 48-h forecasts. All
significant predictors are positively correlated with
DVmax except wind shear.

A normalization procedure allows one to infer the
importance of each significant predictor, which shows
the SST term (POT) to be two to three times as important
as other terms, and the pixel count information to be
second in importance followed by wind shear, persis-
tence with an eye parameterization, pixel count trend,
storm motion, and longitude. The normalization pro-
cedure also provides operational forecasters useful
threshold values.

The total variance (R2) of intensity change explained
by TIPS is 46% at 12 h and increases with each forecast
interval to 60% at 48 h. This multiple regression pro-
cedure appears to be a much better approach in TC
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FIG. 10. As in Fig. 7 but for Typhoon Skip (1985). VWS5 was not available on days 0–2.0 and on day 7 since
the TC was located east of 1758E and 58 averaged shear could not be computed in the BMRC dataset (which is
restricted to 1808).

intensity change analysis than single-variable linear re-
gression. The variance explained by any single variable
alone is relatively small, indicating that TC intensity
change is dependent on a combination of many factors.

Sensitivity tests showed that pixel counts in a 48 area
with a brightness temperature less than 2558C
(PX0455) explained 2%–3% more variance than other
pixel count possibilities, possibly because it contains
deep inner-core convection, is a measure of cloud sym-
metry, and indicates a strong secondary circulation. The
48 pixel count variable may also explain more R2 com-

pared to 18 and 28 pixel count variables due to posi-
tioning errors of the TC center.

Sensitivity tests also showed that averaging wind
shear over a 58 area was the best shear predictor, con-
sistent with SHIPS (DeMaria and Kaplan 1994b). Av-
eraging shear over several data points may be more
sensitive to shear impinging on the edge of the TC, and
it may reduce erroneous wind observations, bogused
vortexes associated with some models, and other large-
scale TC circulations from contaminating the shear cal-
culations.



844 VOLUME 12W E A T H E R A N D F O R E C A S T I N G

While the significant predictors are of most concern
in this paper, it was equally illuminating which predic-
tors were not significant, especially since many of the
unchosen potential predictors are considered to be im-
portant to TC intensity change by some researchers. The
upper-level forcing terms relative eddy angular mo-
mentum flux convergence and 200-mb vorticity advec-
tion were statistically insignificant in the regression
analysis. Other insignificant variables that are frequently
cited in the literature, or used in some empirical
schemes, are planetary eddy angular momentum flux
convergence, storm speed anomaly, latitude, and the ra-
tio of inner- to outer-core convection.

Stratifications by intensity change showed that the
pixel count information provides essential informa-
tion to distinguish between TCs that will intensify
rapidly and those that will intensify at a slower rate,
while shear and intensification potential based on SST
(POT) cannot infer these differences. This implies that
buoyancy is playing an important role in the inten-
sification process and that factors that affect buoyancy
require more research. On the other hand, POT and
shear do provide key information between forecasting
slow and fast weakening, while pixel counts do not.
The contributions by other significant predictors were
also discussed.

An evaluation of TIPS against the Joint Typhoon
Warning Center suggests that the scheme is possibly
competitive with the operational forecasts issued in
1983. However, the regression scheme still suffers large
errors and underforecasts the magnitude of DVmax in fast
intensification and fast weakening situations. Future
possible work includes enlarging the dataset, improving
the current predictors, and investigating other empirical
schemes besides least squares. It is recommended that
pixel counts be included in other empirical schemes that
forecast TC intensification, such as SHIPS. The diabatic
initialization of TC numerical models using pixel counts
as done in Kasahara et al. (1996) should also be inves-
tigated. It is recommended that TIPS be tested as fore-
cast guidance at the Joint Typhoon Warning Center. Giv-
en the scarcity of data in the Tropics, the utilization of
quantitative satellite information offers some of the most
hope for understanding and forecasting TC intensity
change.
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APPENDIX

Sensitivity Experiments of Pixel Counts and
Vertical Wind Shear

During the development of TIPS, many sensitivity
experiments were performed on pixel count and wind
shear variables during the screening phase. These results
are detailed in Fitzpatrick (1996) and summarized here.
They were compared to each other in terms of mean
absolute error and R2.

The first trial replaced PX0455 with its highly cor-
related inner-core counterparts PX0255, PX0265,
PX0155, and PX0165. Since it was possible that non-
linear satellite data will correlate better with DVmax tests
were also performed on their squared counterparts. Fi-
nally, since running means are used in some operational
settings, PX0455 was replaced by its 6-, 12-, and 24-h
running means to assess any forecast differences.

In general, a 1%–3% reduction in R2 occurs for all
pixel count variables compared to PX0455. The absolute
errors were marginally larger (0.1–1.2 kt) in most com-
parisons as well. PX0255, and the squared variables
PX0455**2 and PX0255**2, contained the closest R2

and absolute mean error compared to PX0455. It is in-
teresting that in both the linear and nonlinear cases the
best Tb threshold is 2558C, perhaps because the warmer
cloud tops contain a stronger signal due to their lon-
gevity compared to higher cloud tops with a shorter,
unresolved life span.

It is possible that another pixel count variable could
be more statistically important than PX0455 in a dif-
ferent sample. It certainly is not clear that 48 storm-
centered pixel counts are superior to 18 or 28 pixel count
variables. The reduced R2 may be due to errors in po-
sitioning the center of a TC to the satellite data. How-
ever, positioning errors will occur in an operational set-
ting as well. Therefore, this analysis suggests PX0455
is the best satellite regression predictor for intensity
change until proven otherwise by a better dataset or
better empirical scheme.

Running means also show a degradation in R2 of
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0.5%–1.5% at 24 and 48 h compared to the observed
48 pixel counts. Mean absolute errors are essentially the
same as PX0455. The least degradation occurs with the
12-h running means. This evidence suggests that tem-
poral smoothing of the satellite data removes vital pre-
dictive signals retained at t 5 0 and that they do not
substantially improve the forecasts (with degradation
more likely). It is recommended that TC intensity
change schemes that use running means be reevaluated.

Sensitivity experiments were performed with point
wind shear (VWSPT), averaged wind shear in a 2.58
circle (VWS2), and averaged wind shear in a 58 circle
(VWS5). The variance explained by substituting VWS2
for VWS5 was 0.5% less out to 36 h, and 1% at 48 h.
The variance explained by substituting VWSPT for
VWS5 was 1.3% less for 12 h, increasing to 1.7% at
48 h. An interesting result is that the VWS5 threshold
of 8.5 m s21 increases to 9.0 m s21 for VWS2 and to
9.5 m s21 for VWSPT. This agrees qualitatively with
Zehr’s (1992) 12.5 m s21 threshold for single-point shear
in his tropical cyclogenesis work.
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