Real-Time Video Compression Using Differential
Vector Quantization

James E. Fowler, Jr., Student Member, IEEFE, Kenneth C. Adkins, Student Member, IEEE,
Steven B. Bibyk, Member, IEEE, and Stanley C. Ahalt, Member, IEEE

Abstract—This paper describes hardware that has been built
to compress video in real time using full-search vector quan-
tization (VQ). This architecture implements a differential-
vector-quantization (DVQ) algorithm and features a special-
purpose digital associative memory, the VAMPIRE chip,
which has been fabricated in 2pm CMOS. We describe the
DVQ algorithm, its adaptations for sampled NTSC com-
posite-color video, and details of its hardware implementa-
tion. We conclude by presenting both numerical results and
images drawn from real-time operation of the DVQ hard-
ware.

Keywords— Video compression; vector quantization; real-
time implementation.

I. INTRODUCTION

VECTOR quantization has become well-known and widely
studied since Shannon first established the merits of quan-
tizing vectors rather than scalars [1]. Since that time, vec-
tor quantization (VQ) has been shown to be useful in the
realm of data compression, particularly attracting atten-
tion for its efficient compression of digitized speech and
image data. Meanwhile, as digital data has become more
prevalent, the demand for real-time image-coding hardware
has increased dramatically. The design of real-time vector
quantizers for image coding has been particularly difficult
due to the inherent computational complexity of VQ en-
coders and the extremely fast speeds demanded by real-
time video applications. While much of the research ef-
fort directed at image compression via VQ has not been
directly applicable to real-time hardware coding architec-
tures, some recent proposals have been put forward ([2],
[3], [4], and [5]). Unfortunately, the actual performance of
VQ of real video signals in real time has not been suffi-
ciently demonstrated. The work presented here represents
a real-time demonstration of the merits of VQ.

In this paper, we begin with a review of VQ and previ-
ously proposed hardware V(Q architectures. Next, we give
a description of an algorithm for video compression called
differential vector quantization (DVQ), a combination of
differential-pulse-code modulation (DPCM) and full-search
VQ. We present an architecture that, having been con-
structed in hardware, implements this algorithm in real
time. This architectureis centered around a special-purpose

The authors are with the Department of Electrical Engineering, The
Ohio State University, Columbus, OH 43210-1272.

James E. Fowler, Jr., is supported by a NASA Space Grant/OAI Grad-
uate Fellowship from the Ohio Space Grant Consortium.

This material is based upon work supported by NASA under Award
No. NAG-3-1164 and Award No. NAG-3-1802. Additional support for
this research was provided by grants from Cray Research, Inc.

Submitted to IEEE Transactions on Circuits and Systems for Video

Technology, September, 1993. Revised April 1994. Appears vol. 5, pp.
14-24, February 1995.

digital associative memory, the VAMPIRE chip, which has
been fabricated with a 2um CMOS n-well process and is
described briefly here. We conclude with several examples
drawn from the actual operation of the hardware.

IT. VECTOR QUANTIZATION

Vector quantization is a well-known technique for data
compression and has been discussed extensively elsewhere
(see in particular [6] and [7]). What follows is a brief
overview of the theory of VQ and some of the research
directed towards hardware solutions of VQ encoding.

A. Vector-Quantization Theory

The philosophy of VQ stems from Shannon’s rate-distor-
tion theory which implies that, theoretically, better perfor-
mance can always be obtained from coding vectors of in-
formation rather than scalars [1]. An extensive discussion
of VQ techniques and applications is given in [6], and the
basic theory is summarized in the context of image appli-
cations in [8].

In a typical application of VQ to image coding, the im-
age is broken into blocks of pixels called tiles. Each image
tile of n x m pixels can be considered a vector, u, of di-
mension k = mn. For each image tile, the encoder selects
the codeword y that yields the lowest distortion by some
distortion measure d(u,y). The index, j, of that codeword
is sent through the transmission channel. If the channel is
errorless, the decoder retrieves the codeword y associated
with index 7 and outputs y as the reconstructed image tile,
u.

In the past, VQ has had limited use in image-compression
applications because of the large computational expenses
of both the encoding and training processes. In both pro-
cesses, distortions are calculated for each codeword in the
codebook and these distortions are compared to find the
closest codeword. Since these calculations must be per-
formed for each input vector, the overall operation is quite
computationally expensive. Another disadvantage of VQ is
that, because it encodes blocks, it tends to make the image
edges “blocky” [9].

In an effort to reduce the amount of computation associ-
ated with full-search VQ encoding as discussed above, sev-
eral suboptimal methods have been proposed. These sub-
optimal alternatives typically restrict the codeword search
to a subset of the codebook (tree-structured VQ), or split
the quantization into separate steps that each use smaller
codebooks (multistage VQ and mean/residual VQ). These

suboptimal approaches have been shown to effectively re-
duce computational expenses while sacrificing some en-
coder performance. For an detailed survey of these tech-
niques, refer to [7].

B. Associative Memories and V@)

Associative memories (AM’s), also known as content-
addressable memories (CAM’s), are data storage devices
which are accessed by the contents of the memory cells
rather than the addresses of the cells. This property gives
AM’s inherent search capabilities which are nonexistent in
conventional memories. VQ is well-suited to associative
techniques; indeed, an AM that operates on the VQ dis-
tortion measure d(u,y) is a direct implementation of VQ
into hardware [18]. The use of an AM is one of the few
viable alternatives for performing video-rate VQ since the
address space of a standard look-up table is too large to
be practically implementable, and serial-search techniques
are too time-consuming for real-time operation [18].

Although well-studied in the literature, relatively few
AM’s have been designed and implemented because they
tend to be more application specific than ordinary RAM
memory. Additionally, of those that do exist, most AM’s
are restricted to exact matches; that is, the input word
must be exactly the same as the stored word for the match
to be found [18]. For our implementation of VQ, we need
an AM that can perform inexact matches governed by a
suitable VQ distortion measure.

C. Hardware V(@) Architectures

Despite the promising performance of VQ in theory, prac-
tical hardware VQ) architectures for image coding have been
somewhat scarce in the literature. The first hardware VQ
encoders were designed for speech; however, real-time video
encoding requires significantly faster processing. Rather
than attempt full-search VQ at these rates, several pro-
posed architectures for real-time video VQ are based on
the suboptimal techniques discussed above. For exam-
ple, Dezhgosha et al. [2] propose an architecture based on
mean/residual VQ and Ramamoorthy et al. [12] propose
using multi-stage VQ.

Recent advances in VLSI technology have made full-
search VQ at video rates possible. For example, Panchan-
than and Goldberg [3] propose an architecture based on
an exact-match CAM. More recently, analog VQ encoding
chips have been fabricated by Fang et al. [4] and Tuttle et
al. [5]. However, none of the above have actually demon-
strated performance of real-time video VQ. A number of
papers (e.g. [2], [12], and [3]) have presented proposals for
hardware architectures, but few have actually fabricated
their designs. The analog designs of [4] and [5] suffer from
limited precision and conclusive operational behavior for
real-time video has not been proven for either.

Below, we present an algorithm for VQ of real-time sam-
pled NTSC video. The architecture which implements the
algorithm is described and results which were obtained
from real-time operation of the hardware are given. The
heart of the design features a digital AM, the VAMPIRE

chip, which is described below with the hardware imple-
mentation of the DVQ algorithm. The VAMPIRE chip is
an inexact-match AM that calculates absolute distance be-
tween stored vectors and an input vector. The VAMPIRE
chip delivers the quantization performance associated with
full-search VQ without suffering from the limited precision
of analog designs.

III. ALGORITHM DESCRIPTION

In this section, we discuss the algorithm for image com-
pression which is the basis of the hardware implementa-
tion presented later in the paper. This algorithm has been
explored in detail previously [8], so only a brief overview
is given here. We conclude the algorithm description by
presenting several practical considerations relevant to real-
time processing of sampled NTSC video signals using our
algorithm.

Our algorithm is called differential vector quantization
(DVQ) and it combines the methods of VQ and DPCM.
An artificial neural network (ANN) is used to train the VQ
codebooks. A brief overview of these techniques follows.

A. Artificial Neural Networks and Vector Quantization

The computational complexity of traditional methods for
the design of VQ) codebooks has restricted their use in real-
time applications [6,13]. One such traditional approach is
the Linde, Buzo, and Gray (LBG) algorithm [13] which is a
locally optimal algorithm that has been used extensively in
designing vector quantizers for speech and image encoding.
It has been shown that ANN’s can be used for design of
VQ codebooks to circumvent the limitations of traditional
algorithms [14].

ANN’s consist of a large number of simple, intercon-
nected computational units that can be operated in par-
allel. Also, ANN-codebook-design algorithms do not need
access to the entire training data set at once during the
training process. These features make ANN algorithms
ideally suited for the design of adaptive vector quantizers.

One ANN algorithm, frequency-sensitive competitive learn-
ing (FSCL) [15,16] features a modified distortion measure
that ensures all codewords in the codebook are updated
equally frequently during iterations of the training process.
It has been shown that codebooks designed with FSCL
yield mean squared errors and signal-to-noise ratios com-
parable to those of the locally optimal LBG algorithm [14].
Also, the FSCL ANN yields codebooks with good mean-
squared-error performance and with sufficient entropy so
that entropy coding of the VQ indices would not provide
significant additional compression [§].

B. The Differential-Vector-Quantization Algorithm

DVQ combines the methods of VQ and DPCM. DVQ re-
places the scalar quantizer in the DPCM framework with
a vector quantizer, and consequently has many of the com-
pression advantages of both VQ and DPCM. DVQ has
been presented previously in [9], where it was called vec-
tor DPCM, and in [7], where it was called predictive VQ
(PVQ). One of the first applications of prediction to VQ

for image coding was [17], which also featured a delayed-
decision encoding tree.

Fig. 1 shows the general block diagram of our DVQ al-
gorithm. In the encoding process, the predictor uses previ-
ously reconstructed tiles to predict the pixel values of the
current tile. This predicted tile, PV, is subtracted pixel
by pixel from the actual tile, PIX. The resulting difference
tile, DIFF', is vector-quantized and the index, INDEX, is
broadcast via the transmission channel to the decoder. The
encoder inverse vector-quantizes INDEX, producing a re-
constructed tile, PIX, to be used in later predictions. Note
that, since the vector quantizer processes difference tiles,
the VQ codebook must be appropriately derived from “dif-
ference images.”

The decoder architecture is very similar to that of the
encoder; in fact, a decoder is contained within the encoder.
This replication exists so that the encoder tracks the per-
formance of the decoder in order that the predictions in the
encoder are identical to those in the decoder. Hence, in the
absence of channel errors, the output of the decoder can be
found in the encoder. Thus, for prototyping purposes, al-
gorithm performance can be demonstrated by constructing
only the encoder.

DVQ has several advantages over both scalar DPCM and
VQ. As mentioned above, the quantization of vectors yields
better compression performance than that of scalars. Ad-
ditionally, since the VQ is performed on difference values
rather than on the image itself, the resulting image is less
“blocky” [9]. Finally, the codebooks for DVQ tend to be
more robust and more representative of many images than
codebooks designed for VQ because the difference tiles in
a DVQ codebook are more generic than the image tiles in
a VQ codebook [9].

There are many decisions to be considered in the design
of a DVQ algorithm, such as tile size, distortion criterion,
and method of prediction. These issues have been discussed
in previous publications and so are omitted here. For more
detail, refer to [8].

C. NTSC Considerations

The hardware implementation of our DVQ algorithm
processes NTSC composite-color video signals. Generally,
color video is comprised of three signals: one luminance
signal and two separate color signals. In composite-color
video, the two color signals are combined in quadrature,
modulated by a specially chosen frequency called the color
subcarrier, and added to the luminance signal. Finally,
horizontal and vertical synchronization pulses are included
to produce the baseband composite-color video signal.

In typical discussions of image compression, compression
is performed on red-green-blue pixel arrays (ppm-format
images), and, consequently, nearest-neighbor pixels can be
used in prediction. In contrast, the hardware implemen-
tation of our DVQ algorithm processes sampled NTSC
composite-color video signals. To correctly perform predic-
tion on sampled composite-color video, one must consider
the phasing of the color subcarrier.

Fig. 2 illustrates the prediction scheme of our DVQ al-

gorithm and how it accounts for the phase of the color sub-
carrier. Imagine that the video signal to be processed is a
flat field of one color at a constant intensity. Thus, the lu-
minance signal and both chrominance signals are constant
(DC) values. However, due to the fact that the chromi-
nance signals are modulated in quadrature by the color sub-
carrier, the resulting composite video signal is not DC, but
rather shows sinusoidal oscillations at the color-subcarrier
frequency, as shown in Fig. 2b. Consequently, only those
samples that have the same phase as the current pixel may
be used in the prediction. Thus, our prediction scheme ac-
counts for the phasing of the color information in the video
signal at the expense of using pixels which are farther away
from the current pixel than the nearest neighbors.

Fig. 2a shows the prediction used in the hardware imple-
mentation of our DVQ algorithm in relation to the tiling
of the pixels by the vector quantizer. The NTSC video sig-
nal is sampled at four times the color-subcarrier frequency
(14.31818MHz). The vectors for VQ are tiles of 4x1 sam-
ples. Note that, as shown in Fig. 2b, consecutive intrafield
lines of NTSC video have a phase difference of 180°.

IV. TaE VAMPIRE CHIP

The Vector-quantizing Associative Memory Processor Im-

plementing Real-time Encoding (VAMPIRE) is a special-
purpose, digital associative memory designed for video-rate
vector quantization. The details of the design and opera-
tion of this chip are found elsewhere [18], so only a brief
overview is given here. Fig. 3 shows the general structure
of the VAMPIRE chip.

The VAMPIRE chip is designed to quantize vectors at
video rates. The input to the chip is 32 bits represent-
ing a 4-dimensional vector with each vector component
having 8 bits of resolution. Since these vectors are com-
posed of four video samples, the designed throughput is
that of the NTSC colorburst (3.579545MHz, or one vector
every 280ns). Each VAMPIRE chip holds 32 codewords.
The chips can be operated alone (for codebooks of 32 or
less codewords) or can be linked together to accommodate
codebooks of greater than 32 codewords.

The VAMPIRE chip calculates the I; metric (also known
as absolute distance or city-block distance) between the
input vector and each of the 32 codewords stored in its
memory. These distortion calculations are done digitally
and in parallel by 256 computation cells (8 computation
cells for each of the 32 codewords, see Fig. 3(a)). A priority
encoder selects the codeword with the lowest distortion and
places the address on the output bus. Additionally, the
distortion is placed on a wired-NOR. compare bus. This bus
is used to compare each chip’s minimum internal distortion
to the overall minimum distance as broadcast among chips
when several chips are connected together for codebooks of
greater than 32 codewords. Each chip “disqualifies” itself
if it doesn’t hold the winning codeword; the address of the
winning codeword is then placed on the address bus.

Fig. 3(a) shows the basic layout of the VAMPIRE chip.
The computational cells, CC;;, receive the 32-bit input
vector, VECTOR_IN(31:0), and calculate the absolute dis-

tance between the input vector and each stored codeword.
The winning codeword, which is the codeword with the
smallest absolute distance, is determined by the compu-
tation cells in conjunction with the priority-encoder cir-
cuitry. This smallest distance is output to the COMPARE
lines while the address of the winning codeword is output
to the ADDR_OUT lines.

A. Absolute-Distance Calculation

The algorithm for calculating the absolute-distance met-
ric is as follows. Let C7 be vector component 7 of codeword
7 and I; be vector component ¢ of the input vector. The
absolute distance, D7, for codeword j is

Di =3 D] 1)

where

Dj =|Ci - I 2)

The method for calculating D] is as follows. First, deter-
mine which value is larger, C’g or I;. Form the 1’s com-
plement of this larger value and add it to the other value.
Then 1’s complement the result. For an example of the
calculation, see Table I. Although this approach is uncon-
ventional, it is easily implemented in silicon and involves
less layout area than other methods involving 2’s comple-
ment arithmetic [18].

B. The Computation Cell

Fig. 3(b) is a detailed diagram of the computation cell
for bit ¢ of codeword j. The 4 bits of RAM of this compu-
tation cell represent the same bit position of the 4 vector
components of codeword j. Thus, 8 of these computation
cells are placed side by side, as in Fig. 3(a), to form a com-
plete codeword consisting of four 8-bit vector components.

For each bit of the computation cell, a greater-than cir-
cuit determines whether the stored codeword is greater
than the input vector (signals INPUT(7,3:0) in Fig. 3(Db)).
This calculation cascades between adjacent computation
cells, via GT_IN and GT_OUT, from the least-significant to
the most-significant bit of the codeword. At the most-
significant bit, the final greater-than result, GT, is the fed
back to all the computation cells of the codeword. Us-
ing the GT information, the four absolute-difference values
are calculated for the codeword. As discussed above, this
calculation involves 1’s complements and an addition. Car-
ries are cascaded between computation cells (CIN-DIFF and
COUT-DIFF).

The four absolute-difference values are added together by
the two component sum circuits and the final sum circuit
shown in Fig. 3(b). The final sum is the absolute-distortion
metric which is then passed to the global compare circuit

(GCQ).

C. The Global Compare Circuit

The GCC determines which codeword on the chip has
the smallest absolute distortion. Again, this calculation

is done bit-wise in the computation cells. Fig. 4 shows
the GCC of each computation cell. The internal COMPARE
lines form a wired-NOR bus. The PROPAGATE signal rip-
ples from the most-significant to the least-significant bit of
the final absolute distance. As long as PROPAGATE-IN is
asserted, then that particular codeword has not been elim-
inated from the winner-selection process. For a given bit,
the COMPARE line is driven low if any codeword’s absolute
distance is low in that bit position. If the COMPARE line
is low for that bit, and the codeword’s distance is high,
then the codeword is eliminated from the winner-selection
process and PROPAGATE-OUT is driven low. Otherwise,
PROPAGATE-OUT remains high and the processing contin-
ues to the next bit position.

Fig. 5 shows one bit-slice of the internal COMPARE bus
and each codeword’s GCC for that bit. When the winner-
selection process has completed rippling through each bit,
the final, winning absolute distance remains on the internal
COMPARE bus. The interchip-winner-selection circuit ex-
tends the wired-NOR COMPARE bus to external COMPARE
pins so that a winner may be determined between multi-
ple chips. For a given chip, the interchip-winner-selection
circuit functions as follows. If an internal COMPARE line is
low, then the chip drives the external COMPARE pin low.
If the internal COMPARE line is high, then the pin becomes
an input. At any progressively lower bit positions, a chip is
disqualified from competition if the internal and external
COMPARE states differ. Disqualification occurs by setting
the CHIP-VALID-OUT line high. This CHIP-VALID-OUT line
ripples through each bit of the internal COMPARE bus.

D. Fabrication and Testing

Twelve VAMPIRE chips were fabricated by the MOSIS
service using a 2um CMOS n-well process. Preliminary
low-speed testing indicated that the chip functioned cor-
rectly on a codebook of 32 codewords. However, there was
a minor design error that prevented connecting chips to ex-
pand processing to codebooks of more than 32 codewords:
the NOR gate of the interchip-winner-selection circuitry
(see Fig. 5) was inadvertently fabricated as a NOT, thus
preventing correct operation of the external COMPARE bus.

Another problem was found during high-speed testing;:
the maximum processing time of the chip was determined
to be 380ns (35% slower than the desired speed of 280ns).
It was proposed that the pull-down transistors on the in-
ternal COMPARE bus (see Fig. 4) in the GCC’s were too
small to pull these lines down fast enough.

Another batch of VAMPIRE chips was fabricated. In
the design of these new chips, the NOR-gate error of the
interchip-winner-selection circuitry was corrected, and the
pull-down transitors in the GCC’s were doubled in size. It
has been verified that these new chips correctly connect to-
gether to implement codebooks of more than 32 codewords.
However, doubling the size of the pull-down transistors did
not fix the speed inadequacy. Further investigation is un-
derway to determine why this fix did not work, although
it is suspected that the problem may lie in the off-chip in-
terface circuitry that drives the external pins. If this is

the case, it may be necessary that the chips be fabricated
in 0.5um CMOS; this was not done before because of the
greater fabrication cost of this faster technology. However,
the slow speed of the VAMPIRE chips does not impede
their usefulness in our DVQ system. Indeed, in the next
section, we present a workaround that enables the DVQ
system to operate in real-time with a 128-codeword code-
book.

V. SYSTEM DETAILS

Fig. 6 shows the organization of the hardware constructed
to implement our DVQ video-compression algorithm. The
system is composed of the following logical units: controller
and interface; A/D converter and frame buffer; encoder;
and decoder. Discussion of these units follows. To meet the
speed requirements of real-time operation, FAST Advanced
Schottky TTL logic was used in most of the units. Figs. 9
through 11 are photographs of the DVQ system.

A. Controller and Interface

The controller routes the flow of data between the units
of the system. In addition, it drives a SCSI-bus interface
which allows communication with a PC. The SCSI bus is
used to transfer commands to the system and also to up-
load or download single frames of video.

B. Sampling and Frame Buffer

The A/D converter samples the incoming video at four
times the color-subcarrier frequency (14.31818MHz). In
addition to the active-video portion of the signal, all hori-
zontal and vertical synchronization pulses are sampled and
processed. Thus, one frame of sampled video consists of
910526 samples.

The frame buffer consists of a 512x8 dynamic RAM and
associated addressing and synchronization circuitry. The
frame buffer is used to store a frame of video from the A/D
converter for output through the SCSI bus. Additionally,
it can receive a frame from the SCSI bus and output it
repeatedly to the D/A converter or to the encoder. The
synchronization circuitry analyses the incoming video and
provides the frame buffer with information indicating the
starting and stopping points of a frame.

C. Encoder

Fig. 7 shows a block diagram of the architecture of the
encoder. The encoder consists of the following units: pre-
dictor, vector quantizer, and inverse vector quantizer. The
encoder runs in real-time without buffering, processing in-
put pixel samples and outputting reconstructed pixels at
the sample rate (14.31818MHz,).

The predictor calculates predicted values at the sample
rate. At this rate, the predictor has 69ns to generate each
predicted value. The prediction process involves extracting
three 8-bit reconstructed pixel values from FIFO memory
and performing two 8-bit additions and two divisions-by-2.
High-speed, CMOS FIFOs (size = 2048%9, access time =
10ns) are used. Each 8-bit addition is accomplished with

two 74F283 4-bit adders. The divisions result from ignoring
the least-significant bit.

The inverse vector quantizer is composed of 4 dynamic
RAMs, one for each of the four vector components. The
VQ codebook is stored in both the vector quantizer and
the inverse vector quantizer (This storage is done via the
SCSI bus by circuitry not shown in Fig. 7). The inverse
vector quantizer performs a table lookup into the codebook
given the index value generated by the vector quantizer.

D. Vector Quantizer

As discussed in Section IV, the vector quantizer that has
been constructed operates with up to 128 codewords. Since
the speed of the VAMPIRE chips is 35% too slow, it was
necessary to use two sets VAMPIRE chips in the vector
quantizer, as shown in Fig. 8 for the case of a 32-codeword
codebook. The processing in Fig. 8 is staggered so that
each chip quantizes every-other vector. This “flip-flop” ar-
rangement allows each chip twice the time to process (560ns
instead of 280ns) while ensuring every vector is quantized.
In the current configuration of the DVQ system, two sets
of 4 VAMPIRE chips use this “flip-flop” arrangement to
implement a codebook of 128 codewords and the 7-bit VQ
indices are output at 3.57954MHz.

The training of the VQ codebooks was done offline us-
ing the FSCL ANN algorithm. Six frames of video were
sampled using the frame buffer and were uploaded via the
SCSI bus to a Sun SPARC workstation for training. The
resulting codebooks were then downloaded to the DVQ ar-
chitecture via the SCSI bus.

E. Decoder

As seen in Fig. 1, the architecture of the decoder is sim-
ply a replication of a subset of the encoder architecture.
In the absence of channel errors, the output of the decoder
is the same as the reconstructed values found within the
encoder. Thus, for proof of principle, only the encoder was
constructed. The results shown below are generated by the
encoder. The decoder is a simple extension of the system
hardware, and we plan to construct it in the near future so
that tests over an error-prone channel can be performed.

VI. RESULTS

Figs. 12 and 13 present the results obtained during real-
time operation of our hardware DV(Q implementation on
NTSC video. Fig. 12(a) shows one frame from the original
video sequence. Fig. 12(b) shows that same frame from the
output video sequence, which has been compressed and re-
constructed by the DVQ hardware using 32 codewords (a
compression ratio of 6.4:1, channel rate of 17.9 Mbits/sec).
Some “blocky” effects on the edges, along with some color
distortion, are visible. Fig. 13 shows these same results
obtained for another frame of the video sequence. Table 1T
shows how the image distortion varies with the compres-
sion rate by presenting MSE values calculated by computer
simulations of the DV(Q algorithm for several codebooks of
varying size.

VII. ConcrLusioNs AND FUTURE WORK Mark Hanes for his photographic assistance and Mohamed

In this paper, we have described our DVQ algorithm, Mokheimer for his help with the hardware construction.

presented a hardware architecture implementing it, and

demonstrated real-time operation of this hardware on NTSC REFERENCES

video. The heart of this compression system is the VAM-
PIRE chip, whose characteristics are summarized in Ta-
ble III. Digital associative memories, such as the VAM-
PIRE chip, will certainly play a role in bringing VQ to
prominence in practical, real-time applications. It should
be noted that the vector dimension provided by the VAM-
PIRE chip, 4 components, may be too small for some ap-
plications. Proposals have been made for modifications to
the VAMPIRE design to expand this maximum number of
vector components [18]. It has been proposed to cascade
several chips together to obtain longer vectors in a fashion
similar to the way the current VAMPIRE design allows sev-
eral chips to connect to form larger codebooks. An alter-
nate strategy calls for a synchronous design in which each
vector component is input individually and the distortion
is successively calculated and added to an accumulator.

The system implementation presented is here is simple
and straightforward: simplicity and speed was emphasized
over flexibility so that real-time operation was achieved.
The main goal of this work has been to demonstrate VQ
in real time on real video, not to provide a design imme-
diately applicable to commercial broadcasting. Since, in
this implementation, we were limited to 128 codewords,
the quality we obtained, although reasonable and as ex-
pected from computer simulations, was not sufficient for
broadcast applications.

There are several modifications that would improve the
picture quality and compression performance. First, com-
pression should be performed on only the active-video por-
tion of the signal. To this end, a digital television chip set,
such as the one made by Philips, could be used to strip
out the sync information. The sync information should be
removed from the signal before compression and then re-
stored to the signal by the decoder. Not only would greater
compression be obtained, since only the active video is pro-
cessed, but also the decompressed signal would be of better
quality, since the sync information would not endure the
distortion due to quantization. Additionally, the digital
TV chips could demodulate the color signals from the lu-
minance. In composite-color video, the color signals appear
as high-frequency “noise” in the luminance signal. Conse-
quently, the predictor tends to distort this color “noise,”
despite the compensatory measures taken during the design
of the predictor to ensure that prediction is done using only
same-phase samples. For better edge and color fidelity, the
results presented here indicate that it is imperative that
the color signals be demodulated and processed separately.
Finally, the predictor should incorporate temporal infor-
mation in the form of motion estimation. These ideas are
the topics of further research which we hope will extend
the utility of our architecture.

ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to

[1] C. E. Shannon, “A mathematical theory of communi-
cation,” in Key Papers in The Development of Infor-
mation Theory (D. Slepian, ed.), pp. 5-18, New York:
IEEE Press, 1948.

[2] K. Dezhgosha, M. M. Jamali, and S. C. Kwatra, “A
VLSI Architecture for Real-Time Image Coding Us-
ing a Vector Quantization Based Algorithm,” IEEFE
Transactions on Signal Processing, vol. 40, pp. 181-
189, January 1992.

[3] S. Panchanathan and M. Goldberg,
addressable memory architecture for image coding us-
ing vector quantization,” IEEE Transactions on Sig-
nal Processing, vol. 39, pp. 2066-2078, September
1991.

[4] W.-C. Fang, B. J. Sheu, O. T.-C. Chen, and J. Choi,
“A VLSI Neural Processor for Image Data Compres-
sion Using Self-Organization Networks,” IEEE Trans-
actions on Neural Networks, vol. 3, pp. 506-518, May
1992.

[6] G. T. Tuttle, S. Fallahi, and A. A. Abidi, “A Low-
Power Analog CMOS Vector Quantizer,” in Proceed-
ings of the IEEE Data Compression Conference (J. A.
Storer and M. Cohn, eds.), (Snowbird, UT), pp. 410-
419, IEEE Computer Society Press, 1993.

[6] R. M. Gray, “Vector Quantization,” IEEE ASSP Mag-
azine, vol. 1, pp. 4-29, April 1984.

[7] A. Gersho and R. M. Gray, Vector Quantization and

Signal Compression. Kluwer international series in en-

“A content-

gineering and computer science, Norwell, MA: Kluwer
Academic Publishers, 1992.

[8] J. E. Fowler, M. R. Carbonara, and S. C. Ahalt, “Im-
age Coding Using Differential Vector Quantization,”
IEEFE Transactions on Circuits and Systems for Video
Technology, vol. 3, pp. 350-367, October 1993.

[9] C. W. Rutledge, “Vector DPCM: Vector Predictive
Coding of Color Images,” in Proceedings of the IEEE
Global Telecommunications Conference, pp. 1158-
1164, September 1986.

[10] D.-M. Chiang and L. C. Potter, “Minimax Non-
Redundant Channel Coding for Vector Quantization,”
in Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, (Minneapo-
lis, MN), pp. V-617-V-620, April 1993.

[11] K. A. Zeger and A. Gersho, “Pseudo-Gray Cod-
ing,” IEEFE Transactions on Communications, vol. 38,
pp- 21472158, December 1990.

[12] P. A. Ramamoorthy, B. Potu, and T. Tran, “Bit-Serial
VLSI Implementation of Vector Quantizer for Real-
Time Image Coding,” IEEE Transactions on Circuits
and Systems, vol. 36, pp. 1281 1290, October 1989.

[13] Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm
for Vector Quantizer Design,” IEEE Transactions on
Communications, vol. COM-28, pp. 84 95, January
1980.

[14]

[17]

[18]

S. C. Ahalt, P. Chen, and A. K. Krishnamurthy, “Per-
formance Analysis of Two Image Vector Quantization
Techniques,” in Proceedings of the International Joint
Conference on Neural Networks, vol. I, (Washington,
D.C.), pp. 169-175, June 18-22, 1989.

S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E.
Melton, “Competitive Learning Algorithms for Vector
Quantization,” Neural Networks, vol. 3, pp. 277 290,
1990.

A. K. Krishnamurthy, S. C. Ahalt, D. Melton, and
P. Chen, “Neural Networks for Vector Quantization of
Speech and Images,” IEEE Journal on Selected Areas
in Communications, vol. 8, pp. 1449-1457, October
1990.

H.-M. Hang and J. W. Woods, “Predictive Vector
Quantization of Images,” IEEE Transactions on Com-
munications, vol. COM-33, pp. 1208-1219, November
1985.

K. C. Adkins, The VAMPIRE Chip: A Vector-
quantizer Associative Memory Processor Implement-
ing Real-time Encoding. PhD thesis, The Ohio State
University, 1993.

James E. Fowler, Jr. received the B.S. de-
gree in computer and information science en-
gineering and the M.S. degree in electrical en-
gineering from The Ohio State University in
1990 and 1992, respectively. He is currently
pursuing the Ph.D. degree in electrical engi-
neering at The Ohio State University. He has
worked as a computer programmer at Inter-
graph, Huntsville, AL, and at the Ohio De-
partment of Transportation, Columbus. Since
1990, he has been a graduate researcher at the
Ohio State University. His research interests include image and sig-
nal processing algorithms and hardware, video technology, and neural
network algorithms for signal processing.

Kenneth C. Adkins received a B.S. in 1988,
an M.S. in 1991, and a Ph.D. in 1993, all in
electrical engineering from the Ohio State Uni-
versity. His doctoral work focused on the de-
velopment of VLSI associative memories for
real-time video data compression using vec-
tor quantization. He is presently employed by
National Semiconductor in Santa Clara, CA.
At National, Ken works in the Memory Prod-
ucts Division developing application-specific
FLASH memory circuits and high-performance,

low-voltage EEPROM devices.

Steven B. Bibyk (S’77 - M’84) received a
combined B.S. and M.S. degree in 1980 and a
Ph.D. degree in 1983, all in electrical engineer-
ing and applied physics, from Case Western
Reserve University. He joined the Department
of Electrical Engineering at the Ohio State
University in 1984 where he is presently an As-
sociate Professor. His research has been in the
area of device operation for nonvolatile memo-
ries and the reliability and system limitations
of CMOS VLSI at liquid nitrogen tempera-
tures. In 1991-92, he was a visiting scientist at the NASA Lewis
Research Center and the Ohio Aerospace Intstitute where he worked
on electronics for Space Communication Systems. At present, he is
working on the development of VLSI associative memories for pattern
recognition and demodulation of digital communication signals.

Stanley C. Ahalt is an Associate Professor
with the Department of Electrical Engineering
at The Ohio State University. His research in-
terests are image processing, special purpose
computer architectures, neural networks, and
parallel computing. Dr. Ahalt received BSEE
and MSEE degrees from Virginia Polytechnic
Institute in 1978 and 1980, and his Ph.D. from
Clemson University in 1986. He was a mem-
ber of the Technical Staff at Bell Telephone
Laboratories from 1980 to 1981.

TABLE I
ExAMPLE ABSOLUTE-DISTANCE CALCULATION USING 3-BIT VALUES
(i) Original Problem: [011 — 101]
(i) Complement the larger and add: 011 + 010 = 101
(iii) Complement the result: 101 — 010

TABLE II
MSE VALUEs FROM COMPUTER SIMULATIONS OF DV(Q onN
VIDEO IMAGES WITH CODEBOOKS OF VARYING SIZE

Codebook Size
Image 256 128 64 32
banal* 12.4 20.5 29.3 57.1
thi 5.5 77 111 20.2
kate 4.9 7.2 9.5 18.8
laura*® 5.5 7.5 10.3 20.6
paris* 48 6.7 9.7 153

pete 72 98 142 259
piano 6.8 94 138 269
rhino* 89 129 20.0 315
rio 9.0 14.1 19.7 474

rr_diner* 9.2 13.0 20.2 34.1
snake* 4.8 6.6 9.4 18.6
talk 11.8 18.3 24.7 427

*Images used in training the vector quantizer.

TABLE III
SuMMARY oF VAMPIRE CHIP CHARACTERISTICS

Die size 4.6 x 6.8mm

Technology 2pum CMOS n-well

Vector Rate 2.63 x 108 vectors/sec

Encoding delay* approx. lus

Codebook size 32 codewords on one chip; expandable to 256 with 8 chips
Vector dimension Four 8-bit components

Power supply 5V

Operating Rate** 1.01 x 10° ops/sec

*Encoding delay is for the VAMPIRE chip operating in the DVQ architecture

**Indicates number of mathematical operations per second

rmzz>»IT0

oix + DIFF | vECTOR INDEX___
QUANTIZER
INVERSE
VECTOR
QUANTIZER
A
+ ¢ DIFF
A
PV | PREDICTOR [e2X
+
ENCODER
A P&\ +DIE\F INVERSE INDEX
pix ’) VECTOR
A QUANTIZER
PV
PREDICTOR
DECODER

Fig. 1. Block diagram of DV(Q algorithm

Reconstructed Tiles
(from previous, intrafield lines)

Al | A2 | A3 | A4
Bl | B2 | B3| B4)JCl1|C2|C3]|C4
X1 | X2 | X3 | X4
Current Tile

Prediction: X; = ((B; 4+ Ci)/2 + A;)/2

Consecutive,
intrafield lines Bl
of a field

(a)

(b)

Interlaced lines
of other field
reside here

(not shown)

Fig. 2. Prediction of sampled NTSC composite-color video. (a) Prediction from reconstructed tiles of previous,

intrafield lines. (b) Phase considerations.

© = S © N P
N N N — — © —~ =~
o bl ~ I > i — N I
d =~ 9 ~ o ~ o = - ~ d ~ d = = @
@ g o g o g o g o g o g o & o & o
< < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5
% L F L F L F L F L F L F L F L F
5 5 o 5 o 5 o 5 o 5 5 o 5 o 5 o
o o > o > o > o > o > o > o > o >
g [over-
B CCx CCeo CCso CCuo CCx CCyx CCio CCoo
L Flow
8
-
® [over
2 ver CCrny CCey CCy CCqy CCq CCyp CCyy CCo1
L Flow
8
~
T
g | Over CCyrp CCe CCs CCy2 CCq CCp CCy CCos
L Flow
3
o

I N A R Y SR R A Y |

P ADDR_OUT(4:0)

Priority
Encoder

2

Priority
Encoder

2

Priority
Encoder

1

Priority
Encoder

GT-IN
PROPAGATE-OUT
GT

WORD
CIN-DIFF
GT-IN
CIN-SUM

z
% °F‘I’§"N* CC oy CC oy CC gy CC 4y CC 3y CC oy cC oy CCon
8
(a)
COMPARE(i) INPUT(i, 3:0)
WORD ¢—] P
Absolute
COUT-DIFF & Greater Component| —) RAM |[e—
GT-OUT «— Than Sum 0.1 Difference Bito
COUT-SUM-<«—— Circuit 0 ! | Value 0 ™ .
CT —» [
WORD <¢—| T P
COUT-DIFF Greater Final I L Absolute RAM
GT-OUT «—| Than Sum | Difference Bit1 F—
COUT-SUM <«—— Circuit 1 | S Value 1 ——
GT — A | -| L
WORD ¢——| I | -
COUT-DIFF Greater L J Absolute RAM
GT-OUT a¢—| Than Gee | 4y - Difference Bit 2 l——
PROPAGATE-IN — Circuit 2 Value 2 : >
GT —» I >
WORD ~¢——| I | -
COUT-DIFF Greater Component, A_bsolute RAM
GT-OUT «— Than Sum 2.3 Difference Bit 3 le——
COUT-SUM-<«—— Circuit 3 2 — Value 3 I
GT — | — GT
COMPARE(i) INPUT(i, 3:0)

Fig. 3. General structure of the VAMPIRE chip. (a) Detailed floorplan showing N = 32 codewords.

(b)

Structure of the computation cell, CC;;, for bit 4 of codeword j.

COMPARE())

-4 1
[T1 M1
=
-
METRIC [
METRIC [1
PROPAGATE-IN {>c _Z>° PROPAGATE-OUT

Fig. 4. The GCC within a computation cell of the VAMPIRE chip. METRIC is one bit of the absolute-distance
metric.

CHIP-VALID-IN

PROPAGATE-IN

PROPAGATE-IN

COMPARE(i)

(external pin)

|

Select

Input Output

1

1/10 Pad
Select =L —> Input = pin
Select = H —> pin = Output

CHIP-VALID-OUT

o

INTERCHIP WINNER SELECTION

il

—

GCC

PULL-UP RESISTOR

COMPARE(i) (internal bus)

PROPAGATE-OUT

Computation Cell

—

GCC

PROPAGATE-OUT

Computation Cell

Fig. 5. One bit-slice of the winner-selection circuitry of the VAMPIRE chip. Each codeword’s GCC connects
to the internal COMPARE bus. The interchip-winner-selection circuit extends the internal COMPARE bus off the
chip to select a winning codeword from multiple chips.

. N FRAME SCsI
Video In —= A/D 1K gUrrer [¢P] CONTROLLER [|\ ZrPace

ENCODER CHANNEL DECODER

\

Video Out <— D/A

Fig. 6. Block diagram of the DV(Q system

QO |3Xid

- . 40101a3d
P310NJISU0day
HOLV1 « e
(@] (@] (@]
4 | =
| | |
uonoa1I0D
Mmolpspun 4 4 |
JMOIHBAO

.\
d3ZILNVNO
dOL103A HO1VY1

lae—— U] [9XId

3SUIANI o4 + /\ +
SllL
souaJayIg
N N N N —
v v v v A
d d ba| d % [HO1V1
Y
L anfeA
H paloipald
o}
L ft -
H A4 H
(1apodaq o1) m_v. lazijue 30 1]] _&“_M\Moo w A
xapul v 10109\ | 01196 v
1 2 1
1 +
\4
1

Fig. 7. Encoder block diagram

VQ_ADDR

[TTRR
o o w
o E %
5 ¥
L ADDR_IN COMPARE
A VAMPIRE 0
T VECTOR_IN ADDR_OUT
C
H ENABLE
VQ_RESET*
AMP_SELO* l
I) A
= [ITRR
4 O w
o E 0
5 % &
L ADDR_IN COMPARE L
A VAMPIRE 1 A
VQ_TILE —4 T VECTOR_IN ADDR_OUT T VQ_INDEX
C Cc
H ENABLE H
TILE_CLK

Fig. 8. Schematic diagram of the vector quantizer showing the VAMPIRE chips in “flip-flop” configuration.

e
e

Fig. 9. Photograph of board 1 of the DVQ system. This board contains the A/D converter, the SCSI interface,
and the system controller. The predictor resides on the upper-right of the board, and the inverse VQ RAMs
are on the upper-left.

Fig. 10. Photograph of board 2 of the DVQ system. This board does all the VQ processing. The VAMPIRE
chips are the large chips in the middle. Processing “flip-flops” between the left and right columns of the
VAMPIRE chips, effectively doubling the allowable VQ-processing time.

Fig. 11. Photograph of the entire DVQ system.

(b)

Fig. 12. Output of the DVQ hardware on real-time video. (a) Original video frame. (b) Frame from output
video compressed using VQ with 32 codewords.

Fig. 13. Output of the DVQ hardware on real-time video. (a) Original video frame. (b) Frame from output
video compressed using VQ with 32 codewords.

