Adaptive Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2015

A report to the Pelican River Watershed District

Gray Turnage¹, Brent Alcott², and Tera Guetter²

¹Geosystems Research Institute, Mississippi State University, Mississippi State, MS 39762-9627

² Pelican River Watershed District, Detroit Lakes, MN 56501

Geosystems Research Institute Report 5067

April 2016

Adaptive Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2015

Gray Turnage¹, Brent Alcott², and Tera Guetter²

¹Geosystems Research Institute, Mississippi State University, Mississippi State, MS 39762-9627

² Pelican River Watershed District, Detroit Lakes, MN 56501

Executive Summary

Conclusions

- Based on field evaluations, 2015 sites receiving two submersed treatments with the contact herbicide diquat have resulted in a decrease in rhizome bud density of flowering rush for the fourth year in a row.
- Sites receiving one diquat treatment did not see an increase in rhizome bud density during the growing season.
- Applications of diquat have significantly reduced the nuisance problem and the potential for plants to regrow and spread.
- Diquat treatments do not appear to have a significant effect on species diversity, though some individual species in some plots may have been adversely affected.

Recommendations

- Field evaluations and monitoring of diquat or other herbicides should be continued to determine if reduction in belowground biomass and rhizome bud density is repeatable.
- We recommend that other herbicide active ingredients and use patterns be evaluated under controlled conditions to determine if there are alternatives to diquat treatments, which may be field demonstrated in the future.
- We recommend ongoing assessments to continue through 2016 by harvesting forty core samples in the nine biomass assessment plots: three reference, three receiving one diquat treatment, and three receiving two diquat treatments.

Cite as:

Turnage, G., B. Alcott, and T. Guetter. 2016. Adaptive Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2015. Geosystems Research Institute Report 5067, Geosystems Research Institute, Mississippi State University, Mississippi State, MS. April 2016.

Introduction

Flowering rush (*Butomus umbellatus* L.) is an emergent invasive plant that has invaded the Detroit Lakes area, specifically, Detroit Lake (Big Detroit, Little Detroit, and Curfman Lakes), Lake Sallie, Lake Melissa and Mill Pond (Becker County) since the 1960s. It is native to Europe and Asia and first entered the United States in 1928. Flowering rush has continued to be a problem in the Detroit Lakes system for the past three decades. However, applications of the contact herbicide diquat over the last four years have helped to control the spread and density of the plant.

Although flowering rush has been in North America for over forty years, very little information is known about its biology, ecology, and management. Bellaud (2009) reports that it was first observed in North America in St. Lawrence River (Quebec) in 1897. Flowering rush is currently found in all of the southern Canadian provinces except Alberta, and all of the states bordering Canada and the Great Lakes (NRCS 2013). Bellaud (2009) echoes our current state of affairs with flowering rush: "...there is not a wealth of information regarding the management of flowering rush infestations in North America." Bellaud (2009) cites Minnesota Department of Natural Resources research to support the recommendation to use imazapyr on the exposed foliage of flowering rush. Parkinson and others (2010) are also limited in their management recommendations, citing either imazapyr or imazamox foliar applications for management of flowering rush.

The US Army Engineer Research and Development Center (USAERDC) studied the available aquatic herbicides for control of submersed flowering rush plants from Minnesota and Idaho (Poovey et al. 2012). As part of their study, they determined that populations in both Idaho and Minnesota were triploid, as confirmed by ploidy and AFLP (Poovey et al. 2012). Their studies of Minnesota-derived plants used diquat, endothall and flumioxazin at relatively short exposure times. Flumioxazin did not reduce shoot biomass in either treatment. Diquat at the full label rate (0.37 ppm) and at 6 and 12 hours contact time significantly reduced shoot biomass relative to the reference. Endothall treatments at 1.5 and 3 ppm at both 12 and 24 hours exposure time also reduced shoot biomass. No treatments reduced belowground biomass. In contrast, their studies with Idaho-derived plants found flumioxazin at 400ppb and 24 hours exposure time controlled shoot biomass, and endothall at 3 ppm and 24 hour exposure time controlled both aboveground and belowground biomass (Poovey et al. 2012). They also note that repeated treatments with contact herbicides, or integration with systemic herbicides, would be needed to achieve longterm control. Skogerboe (unpub. data) analyzed in lake treatments of endothall in the Detroit Lakes and determined that the adequate concentration exposure times could not be reached to control flowering rush. However data collected on diquat treatments in the Detroit Lakes in 2012 and 2013 showed significant reduction in above and belowground biomass as well as rhizome bud density (Figure 1; Madsen et al. 2013, 2014). The 2012 diquat protocol was repeated in 2013 and 2014 on flowering rush beds in the Detroit Lakes.

In 2015 the protocol was amended such that sites with low density of flowering rush received only one (<20% prevalence) or no (<5% prevalence) diquat treatments instead of two while sites with high densities (>20% prevalence) of flowering rush still received two diquat treatments. The process of geographic range expansion is characterized by three phases once an invasive reaches new habitat: the lag phase, exponential growth phase, and carrying capacity (Figure 2). The lag phase is seen when invasive species first reach a site; typically invasive plants in this phase are found in very low densities and do not appear to pose a threat as they are not expanding rapidly. The exponential growth phase is seen when plants are actively spreading across a site often doubling in abundance from one year to the next; at this point the species becomes much more noticeable due to its larger geographic range. The carrying capacity phase is achieved when the invasive species has colonized as much available habitat as possible; often this is characterized by large monotypic stands of the invasive where a diverse assemblage of species had been present.

The purpose of amending the protocol was to decrease resources needed on sites with low flowering rush prevalence so that they could be allocated elsewhere to sites with high prevalence of flowering rush. Sites treated once with diquat were treated in July so as to apply herbicide to the maximum amount of sprouted rhizome buds. Sites receiving two treatments were treated in June and July as in years past. The ultimate goal is conversion of all flowering rush sites to low or no prevalence sites (sites characteristic of the lag phase of the invasion process) in the Detroit Lakes system so that a minimum amount of resources is needed to control the species.

Materials and Methods

Treatments were made to manage flowering rush populations at designated treatment areas (Tables 1-2; Figures 3-4) of submersed or mostly submersed plants with the contact herbicide diquat using drop hoses from a boat, in 4 feet and less of water. From two feet to four feet deep, a rate of two gallons per surface acre were used, and in water depths from shoreline to two feet deep, a rate of one gallon per surface acre was applied; as per the US EPA label. The target water column concentration was 0.37 ppm of diquat. Treatments occurred in Big and Little Detroit (Figure 3), Curfman Bay (Figure 3), Sallie (Figure 4), and Melissa Lakes (Figure 4; Tables 1-3). Diquat formulation used was a 2 lbs. per gallon diquat cation formulation (Tribune, Syngenta Crop Protection, LLC, Greensboro, NC).

Assessment

We assessed the response of flowering rush to herbicide applications using biomass estimates, and assessed the impact of submersed applications on aquatic plant communities using a point intercept method. The initial point intercept survey in June was used to assign the number of diquat applications to each treatment site. Sites with greater than 20% presence of flowering rush still received two diquat applications, sites with prevalence between 5% and 20% received one

diquat application, and sites with less than 5% prevalence received no herbicide treatment (Table 1).

Biomass estimates. Assessment of both submersed and emergent treatments in this system were done by sampling biomass collected with a 6" diameter biomass coring device to collect both shoots and rhizomes (Figure 5; Madsen et al. 2007). Forty cores per plot were collected before each proposed treatment, and at the end of the growing season in September (Table 2). After washing to remove sediment, cores were held on ice until returned to campus. Cores were separated into aboveground and belowground biomass. Rhizome buds (Figure 1) were counted, but not separated from the remainder of belowground biomass. Plants were dried for 72 hours at 50C or greater, and weighed for biomass. Successful applications should reduce rhizome weight and rhizome bud number. Nine sites were sampled for biomass: three reference and six treatment plots (Table 3); for a total of 360 biomass samples per time. Biomass samples were taken at predetermined points randomly selected from the point intercept points (below) of those plots. For post treatment samples, forty biomass samples were taken from each plot. Statistical analysis of biomass data was performed using a one way analysis of variance (ANOVA), with the categorical variable being number of treatments (zero, one, or two) and the dependent variable being biomass or bud count. Analysis was done using Statistix (Analytical Software, Tallahassee, FL).

Point Intercept. To assess the community impact of submersed diquat treatments, point intercept sampling (Madsen 1999) was done on all treated plots and reference plots (Table 2). The grid interval was no less than 25 m. There were not an equal number of points per plot. Statistical analysis was performed using a Kruskal-Wallice analysis, testing for a statistically-significant change in frequency between the three sampling dates. Analysis was done using Statistix (Analytical Software, Tallahassee, FL).

Results and Discussion

Biomass. The measurement of abundance, such as biomass, is the best method to evaluate the effectiveness of control (Madsen 1993; Madsen and Bloomfield 1993; Madsen and Wersal 2012). Since the aboveground biomass often causes the nuisance problem, reduction in biomass may measure the reduction in nuisance potential. While reduction of the nuisance potential is important to resource user perception, it is also important to contribute to the long-term management of the invasive plant species. For flowering rush, the two best indicators of reduction in long-term growth potential are rhizome abundance and rhizome bud number. Rhizome abundance may be measured by belowground biomass since rhizomes are the dominant constituent of belowground biomass. Rhizome bud density is important since buds appear to be the perennating and regrowth propagule (Marko et al. 2012; Madsen et al. 2012). Rhizomes are the main location to store carbohydrates, essential for overwintering and for regrowth from

management. Rhizome buds are the individual growing points from which new ramets or leaves regrow. Reductions in these two tissues should result in long-term control.

Rhizome bud density was significantly reduced (p<0.0001) in diquat treated plots in 2013, 2014, and again in 2015 in sites receiving two diquat applications (Figure 6). In those sites receiving one diquat application, bud density did not increase during the 2015 growing season (Figure 6).

Biomass plots examined for bud density over time illustrate a general trend for reference site bud density to increase during the growing season, and treatment plot density to decline (Figure 7). Bud densities in reference plots was not statistically significantly lower than previous years (Figure 7). However, bud densities in diquat treated plots has significantly decreased from 2013 densities (Figure 7).

Point Intercept. While decreasing the nuisance growth and reducing the long-term potential to spread and regrow is important for managing invasive plants, this benefit must be weighed against possible damage to the native plant community. A point intercept study was performed to evaluate the impact on native plant species and the overall community. This sampling did not detect a decrease in the abundance of native plants, but rather if plants survived and continued at the same frequency.

Flowering rush frequency was significantly lower in treated plots than untreated plots by the final assessment in September (Tables 3-5; Figure 8). In many individual plots, the frequency of flowering rush was dramatically reduced (Tables 7-30). For instance, frequency of flowering rush in plot C-DIQ-3 was 62.5% in June, 12% after one treatment in July, and 3% after two treatments in September (Table 20). In general, diquat treatments resulted in reduced nuisance from flowering rush growth.

Average species richness (no. per point) in diquat treated plots did not statistically change over the course of the growing season in sites receiving one diquat treatment (Figure 9). This suggests that while one diquat application is not enough to reduce flowering rush biomass it is sufficient to halt the spread of the invasive and maintain the current level of rush within a growing season. Prevalence of flowering rush in sites receiving two applications of diquat significantly declined over the course of the growing season as in years past (Figure 9). As in 2014, we assessed plant frequency for all diquat treated (Table 3 and 4) and untreated (Table 5) plots, determining which species had a significant change over time. Of the 34 species found in previous years, 31 were found in the 2015 survey sites. There were 13 species that had no change regardless of site location or time, three of which were not found (*Bidens beckii* – water marigold, *Juncus pelocarpus* – brownfruit rush, and *Typha latifolia* – broadleaf cattail) in the 2015 surveys. There were two species that increased in all sites. There were five species that decreased in all 2015 plots, two of which were the invasive species flowering rush and curly leaf pondweed. There remaining species showed various types of change between survey efforts (Table 6), indicating small to moderate change in frequency with treatments.

Given that there are 24 individual plots, an analysis of each plot will not be discussed.

Diquat treatments do not appear to have a significant effect on species diversity, though some individual species in some plots may have been adversely affected.

Conclusions and Recommendations

Conclusions

- Based on field evaluations, 2015 sites receiving two submersed treatments with the contact herbicide diquat have resulted in a decrease in rhizome bud density of flowering rush for the fourth year in a row.
- Sites receiving one diquat treatment did not see an increase in rhizome bud density during the growing season.
- Applications of diquat have significantly reduced the nuisance problem and the potential for plants to regrow and spread.
- Diquat treatments do not appear to have a significant effect on species diversity, though some individual species in some plots may have been adversely affected.

Recommendations

- Field evaluations and monitoring of diquat or other herbicides should be continued to determine if reduction in belowground biomass and rhizome bud density is repeatable.
- We recommend that other herbicide active ingredients and use patterns be evaluated under controlled conditions to determine if there are alternatives to diquat treatments, which may be field demonstrated in the future.
- We recommend ongoing assessments to continue through 2016 by harvesting forty core samples in the nine biomass assessment plots: three reference, three receiving one diquat treatment, and three receiving two diquat treatments.

Acknowledgements

This research was supported by the Pelican River Watershed District, with additional support from the Minnesota Department of Natural Resources. Professional Lake Management (PLM) performed the herbicide treatments, and provided information on those treatments. Laboratory assistance was provided by Trey Jackson, Steven Meadows, and Samuel Hansen from Mississippi State University and field assistance was provided by Josh Sundberg and Tim Lenzmeier from the Pelican River Watershed District.

Literature Cited

Bellaud, M. 2009. Chapter 13.10: Flowering Rush, pp. 141-144. In: Biology and control of aquatic plants: a best management practices handbook (Gettys LA, WT Haller and M Bellaud, eds.). Aquatic Ecosystem Restoration Foundation, Marietta GA. 210 pages.

Madsen, J.D. 1999. Point intercept and line intercept methods for aquatic plant management. US Army Engineer Waterways Experiment Station Aquatic Plant Control Research Program Technical Note CC-02, Vicksburg, MS.

Madsen, J.D. 1993. Biomass techniques for monitoring and assessing control of aquatic vegetation. Lake and Reservoir Management 7:141-154.

Madsen, J.D., G. Turnage, and B. T. Sartain. 2014. Management of Flowering Rush Using the Contact Herbicide Diquat in Detroit Lakes, Minnesota 2013. Geosystems Research Institute Report 5063, Geosystems Research Institute, Mississippi State University, Mississippi State, MS. May 2014

Madsen, J.D., B. Sartain, G. Turnage, and M. Marko. 2013. Herbicide Trials for Management of Flowering Rush in Detroit Lakes, Minnesota for 2012. Geosystems Research Institute Report 5059, Geosystems Research Institute, Mississippi State University, Mississippi State, MS. April 2013.

Madsen, J.D., and J.A. Bloomfield. 1993. Aquatic vegetation quantification symposium: An overview. Lake and Reservoir Management 7:137-140.

Madsen, J. D. and R. M. Wersal. 2012. A review of aquatic plant monitoring and assessment methods. A report to the Aquatic Ecosystem Restoration Foundation. 24p. May 2012.

Madsen, J. D., Wersal, R. M., Marko, M. D., and Skogerboe, J. G. 2012. Ecology and Management of Flowering Rush (*Butomus umbellatus*) in the Detroit Lakes, Minnesota. GRI Report #5054. Mississippi State University: Geosystems Research Institute.

Madsen, J. D., Wersal, R. M., & Woolf, T. E. 2007. A New Core Sampler for Estimating Biomass of Submersed Aquatic Macrophytes. Journal of Aquatic Plant Management. 45: 31-34.

Marko, M., J. Madsen, C. Olsen, and R. Smith. 2012. Ecology of Flowering Rush (*Butomus umbellatus*) in Detroit Lakes, Becker County, Minnesota. Letter report, Concordia College, Moorhead, MN. August 2012.

NRCS 2013. Plants Database, US Department of Agriculture, Natural Resources Conservation Service (NRCS). http://plants.usda.gov. Access March 2013.

Parkinson, H., J. Mangold, V. Dupuis, and P. Rice. 2010. Biology, Ecology, and Management of Flowering Rush (*Butomus umbellatus*). Montana State University Extension, EB0201, December 2010. 7pp.

Poovey, A.G., C.R. Mudge, R.A. Thum, C. James, and K.D. Getsinger. 2012. Evaluations of contact herbicides for controlling two populations of submersed flowering rush. Journal of Aquatic Plant Management 50:48-54.

Figure 1. Rhizome of flowering rush (*Butomus umbellatus*) with two rhizome buds visible. This is the major propagule or growing point of the triploid biotype.

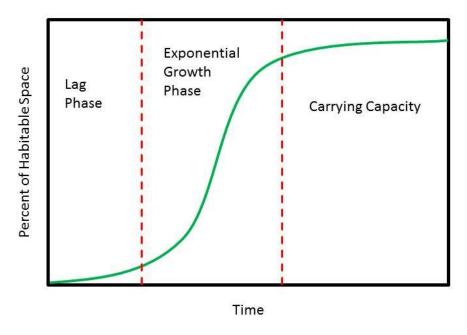


Figure 2. Figure showing the different phases of spread after a site has been invaded.

Figure 3. Treatment ("DIQ") and reference ("REF") plots for Detroit Lakes, MN, for 2014. To view treatment plots for 2012 and 2013, refer to Madsen et al. 2013 and 2014.

Figure 4. Treatment ("DIQ") and reference ("REF") plots for Lakes Sallie and Melissa, MN, for 2014. To view treatment plots for 2012 and 2013, refer to Madsen et al. 2013 and 2014.

Figure 5. The 6" diameter coring device used to collect aboveground and belowground biomass of flowering rush in the Detroit Lakes.

Rhizome Bud Density

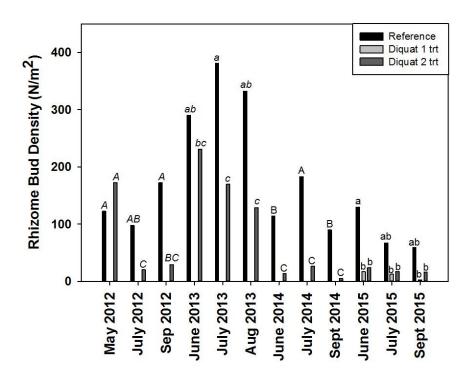


Figure 6. Rhizome bud density (N/m²) for May, July, and September of 2012; June, July and August of 2013; June, July, and September 2014; and June, July, and September of 2015 of reference (untreated) and diquat-treated plots in the Detroit Lake Systems. Diquat 1 trt bars represent those sites that received one diquat treatment (2015 only) while those designated diquat 2 trt received two herbicide treatments. Bars sharing the same letter within a year are not significantly different from one another. Means comparison by homogenous groups, p=0.05, comparing means of treatments and months within a year. Therefore, comparisons for 2012 are capital italics, for 2013 are lower case italics, for 2014 are upper case normal type, and 2015 are lower case normal type. Plots varied between the three years. Data for 2012 and 2013 are from Madsen et al. 2014 while data for 2014 are from Turnage and Madsen 2015.

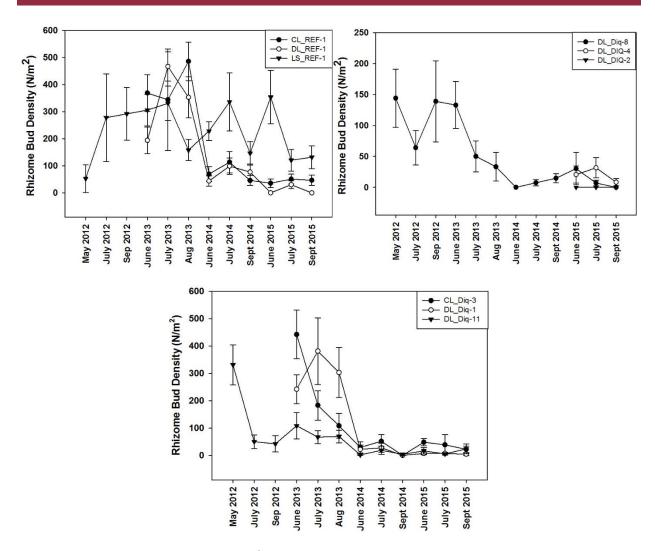


Figure 7. Rhizome bud density (N/m²) for reference sites (top left), sites receiving one diquat treatment (top right), and sites receiving two treatments (bottom) in the Detroit Lakes system from 2012 through 2015. See Table 2 for a key to plots and their treatments in respective years. Points are the means for twenty samples in 2012 and 2013, 30 samples in 2014, and 40 samples in 2015 per plot per time interval, and the bars indicate one standard error of the mean. Diquat plots treated after the June and July sampling.

Flowering Rush Frequency

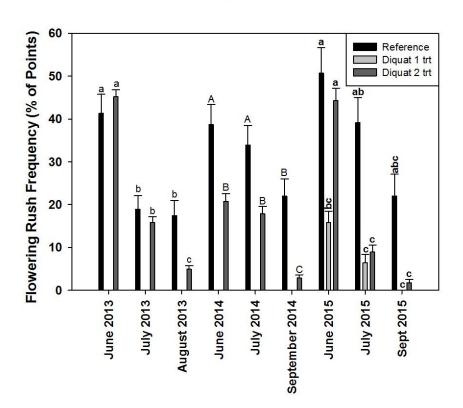


Figure 8. Percent frequency of flowering rush in June, July, and August of 2013 and June, July, and September of 2014 and 2015 in plots on Detroit Lakes system, MN. Lower case letters are for 2013 data, upper case are for 2014, and lower case bold type are for 2015 data. Different letters indicate that the means are different according to ANOVA at the p-0.05 level within years.

Species Diversity

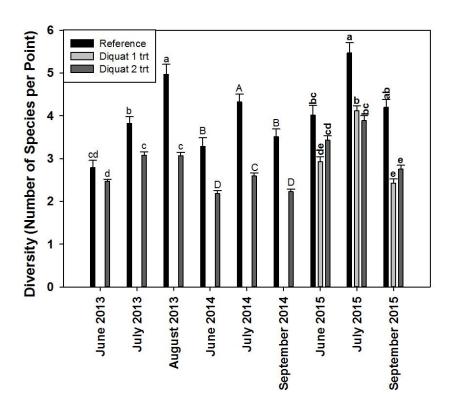


Figure 9. Species diversity (as average number of species per point) in reference and diquattreated plots in the Detroit Lake system in 2013, 2014, and 2015. Diquat plots treated after the June and July sampling. Lower case letters are for 2013 data, upper case are for 2014 data, and lower case bold type are for 2015. Different letters indicate that the means are statistically different according to ANOVA at the p-0.05 level within a given year.

Table 1. Treatment and reference plot names for Detroit Lakes basins for 2015 with the 2014 plot designation, plot area, and number of diquat treatments per plot.

Lake	2015 Plot Designation	2014 Plot Designation	Area (acres)	# of Diquat Treatments
Curfman	CL_Diq-1	CL_Diq-1	1.4	2
Curfman	CL REF-1	CL REF-1	2.2	Reference
Curfman	CF_Diq-3	CF_Diq-3	13.3	2
Little Detroit	DL_Diq-1	DL_Diq-1	4.0	2
Little Detroit	DL_Diq-2	DL_Diq-2	5.6	1
Little Detroit	DL_Diq-3	DL_Diq-3	9.5	2
Big Detroit	DL_Diq-4	DL_Diq-4	6.9	1
Big Detroit	DL_Diq-5	DL_Diq-5	11.0	2
Big Detroit	DL_Diq-6	DL_Diq-6	19.3	2
Big Detroit	DL_Diq-7	DL_Diq-7	5.4	1
Big Detroit	DL_Diq-8	DL_Diq-8	83.4	1
Big Detroit	DL_Diq-9	DL_Diq-9	4.2	2
Big Detroit	DL_Diq-10	DL_Diq-10	8.3	1
Big Detroit	DL_Diq-11	DL_Diq-11	14.7	2
Big Detroit	DL_REF-1	DL_REF-1	6.4	Reference
Melissa	LM_Diq-1	LM_Diq-1	7.4	1
Melissa	LM_Diq-2	LM_Diq-2	3.4	1
Melissa	LM_Diq-3	LM_Diq-3	4.1	0
Melissa	LM_Diq-4	LM_Diq-4	7.9	2
Melissa	LM_Diq-5	LM_Diq-5	20.1	2
Sallie	LS_REF-1	LS_REF-1	21.0	Reference
Sallie	LS_Diq-1	LS_Diq-1	16.5	2
Sallie	LS_Diq-2	LS_Diq-2	0.8	2
Sallie	LS_Diq-3	LS_Diq-3	7.7	2
TOTAL			284.5	

Table 2. Nine sites at which forty biomass samples per site were collected in June, July, and September of 2015.

Lake	2015 Plot Designation	2014 Plot Designation	Area (acres)	Notes
Curfman	CL_REF-1	CL_REF-1	2.20	Reference
Big Detroit	DL_REF-1	DL_REF-1	6.41	Reference
Sallie	LS_REF-1	LS_REF-1	21.01	Reference
Little Detroit	DL_Diq-2	DL_Diq-2	3.37	One Treatment
Big Detroit	DL_Diq-4	DL_Diq-4	6.92	One Treatment
Big Detroit	DL_Diq-8	DL_Diq-8	83.40	One Treatment
Little Detroit	DL_Diq-1	DL_Diq-1	4.00	Two Treatment
Curfman	CL_Diq-3	CL_Diq-3	13.27	Two Treatment
Big Detroit	DL_Diq-11	DL_Diq-11	14.73	Two Treatment

Table 3. Point intercept frequency of species in all plots receiving one diquat treatment in the Detroit Lakes system, 2015 for three months. P-value is based on a Kruskal-Wallis test, with month as the variable. A p-value of "M" indicates insufficient presence while p-values in bold type indicate a statistically significant difference. N= 184, 190, 190; respectively.

N= 184, 190, 190; respec	Scientific	CODE	June	July	Sep	P-value
Water marigold	Bidens beckii	BBEC	0	O O	Sep 0	M M
<u> </u>				Ť	_	
Flowering rush	Butomus umbellatus	BUMB	29	11	0	<0.0001
Coontail	Ceratophyllum demersum	CDEM	12	21	20	0.2625
Chara	Chara	chara	158	165	162	0.9053
Water moss	Drepanocladus	DREP	26	45	55	0.0022
Elodea	Elodea canadensis	ECAN	3	3	0	0.2149
Water stargrass	Heteranthera dubia	HDUB	0	0	4	0.0188
Brownfruit rush	Juncus pelocarpus	JPEL	0	0	0	M
Common duckweed	Lemna minor	LMIN	0	0	0	M
Star duckweed	Lemna trisulca	LTRI	44	41	47	0.7538
Northern watermilfoil	Myriophyllum sibiricum	MSIB	11	100	27	<0.0001
Bushy naiad	Najas flexilis	NFLEX	0	28	190	<0.0001
Nitella	Nitella	NITEL	0	2	0	0.1392
White waterlily	Nymphaea odorata	NODOR	0	0	0	M
Yellow pondlily	Nuphar lutea	NVARI	2	0	0	0.1263
Curlyleaf pondweed	Potamogeton crispus	PCRI	26	0	2	<0.0001
Leafy pondweed	Potamogeton foliosus	PFOL	45	16	0	<0.0001
Variable pondweed	Potamogeton gramineus	PGRAM	2	0	0	0.1263
Illinois pondweed	Potamogeton illinoensis	PILL	52	75	19	<0.0001
Floating pondweed	Potamogeton nataus	PNAT	0	0	0	M
Whitestem pondweed	Potamogeton praelongus	PPRA	5	10	8	0.4595
Richardson's pondweed	Potamogeton richardsonii	PRICH	32	60	19	<0.0001
Robbin's pondweed	Potamogeton robbbinsii	PROBB	2	4	0	0.1357
Flatstem pondweed	Potamogeton zosteriformis	PZOS	36	55	9	<0.0001
Widgeongrass	Ruppia cirrhosa	RCIRR	0	0	0	M
White water buttercup	Ranunculus longirostris	RLON	1	0	0	0.3567
Hardstem bulrush	Schoenoplectus acutus	SACU	0	0	1	0.3744
Arumleaf arrowhead	Sagittaria cuneata	SCUN	0	2	0	0.1392
Sago pondweed	Stuckenia pectinata	SPEC	0	6	2	0.0310
Narrowleaf cattail	Typha angustifolia	TANG	0	0	0	M
Broadleaf cattail	Typha latifolia	TLAT	0	0	0	M
Common bladderwort	Utricularia macrorhiza	UMAC	1	6	2	0.1002
Watercelery	Vallisneria americana	VAME	52	132	83	<0.0001
Watermeal	Wolffia	WOOLF	0	0	0	M
Total species richness		SPP	19	19	16	
Native species richness		NATSPP	17	18	15	

Table 4. Point intercept frequency of species in all plots receiving two diquat treatments in the Detroit Lakes system, 2015 for three months. P-value is based on a Kruskal-Wallis test, with month as the variable. A p-value of "M" indicates insufficient presence while p-values in bold type indicate a statistically significant difference. N= 311, 314, 314; respectively.

N= 311, 314, 314; respecti						
Common	Scientific	CODE	June	July	Sep	P-value
Water marigold	Bidens beckii	BBEC	0	0	0	M
Flowering rush	Butomus umbellatus	BUMB	142	30	2	<0.0001
Coontail	Ceratophyllum demersum	CDEM	9	16	6	0.0263
Chara	Chara	chara	295	312	304	<0.0001
Water moss	Drepanocladus	DREP	54	70	71	0.0021
Elodea	Elodea canadensis	ECAN	1	0	0	0.3647
Water stargrass	Heteranthera dubia	HDUB	0	0	2	0.1363
Brownfruit rush	Juncus pelocarpus	JPEL	0	0	0	M
Common duckweed	Lemna minor	LMIN	0	0	0	M
Star duckweed	Lemna trisulca	LTRI	14	36	33	0.0011
Northern watermilfoil	Myriophyllum sibiricum	MSIB	44	60	29	0.0016
Bushy naiad	Najas flexilis	NFLEX	0	47	13	<0.0001
Nitella	Nitella	NITEL	0	0	1	0.3700
White waterlily	Nymphaea odorata	NODOR	5	13	7	0.1222
Yellow pondlily	Nuphar lutea	NVARI	41	44	16	0.0004
Curlyleaf pondweed	Potamogeton crispus	PCRI	56	3	1	<0.0001
Leafy pondweed	Potamogeton foliosus	PFOL	106	17	1	<0.0001
Variable pondweed	Potamogeton gramineus	PGRAM	1	0	0	M
Illinois pondweed	Potamogeton illinoensis	PILL	72	93	44	<0.0001
Floating pondweed	Potamogeton nataus	PNAT	0	6	0	0.0024
Whitestem pondweed	Potamogeton praelongus	PPRA	4	11	2	0.0185
Richardson's pondweed	Potamogeton richardsonii	PRICH	106	130	87	0.0011
Robbin's pondweed	Potamogeton robbbinsii	PROBB	1	6	1	0.0437
Flatstem pondweed	Potamogeton zosteriformis	PZOS	71	48	11	<0.0001
Widgeongrass	Ruppia cirrhosa	RCIRR	1	0	0	0.3647
White water buttercup	Ranunculus longirostris	RLON	2	0	0	0.1325
Hardstem bulrush	Schoenoplectus acutus	SACU	18	14	12	0.4957
Arumleaf arrowhead	Sagittaria cuneata	SCUN	0	0	0	M
Sago pondweed	Stuckenia pectinata	SPEC	0	1	0	0.3700
Narrowleaf cattail	Typha angustifolia	TANG	6	6	3	0.5395
Broadleaf cattail	Typha latifolia	TLAT	0	0	0	M
Common bladderwort	Utricularia macrorhiza	UMAC	0	3	5	0.0932
Watercelery	Vallisneria americana	VAME	99	237	200	<0.0001
Watermeal	Wolffia	WOOLF	0	0	0	M
Total species richness		SPP	22	22	22	
Native species richness		NATSPP	20	20	20	

Table 5. Point intercept frequency of species in all untreated reference plots in the Detroit Lakes system, 2015 for three months. P-value is based on a Kruskal-Wallis test, with month as the variable. A p-value of "M" indicates insufficient presence while p-values in bold type indicate a statistically significant difference. N= 71, 69, 68; respectively.

69, 68; respectively. Common	Scientific	CODE	June	July	Sep	P-value
Water marigold	Bidens beckii	BBEC	0	0	0	M
Flowering rush	Butomus umbellatus	BUMB	36	27	15	0.0020
Coontail	Ceratophyllum demersum	CDEM	10	38	29	<0.0001
Chara	Chara	chara	37	31	24	0.1364
Water moss	Drepanocladus	DREP	4	12	9	0.0953
Elodea	Elodea canadensis	ECAN	9	9	9	0.9951
Water stargrass	Heteranthera dubia	HDUB	0	0	8	0.0001
Brownfruit rush	Juncus pelocarpus	JPEL	0	0	0	M
Common duckweed	Lemna minor	LMIN	0	0	1	0.3590
Star duckweed	Lemna trisulca	LTRI	32	40	43	0.0853
Northern watermilfoil	Myriophyllum sibiricum	MSIB	17	45	28	<0.0001
Bushy naiad	Najas flexilis	NFLEX	0	8	9	0.0074
Nitella	Nitella	NITEL	0	0	0	M
White waterlily	Nymphaea odorata	NODOR	8	17	11	0.1084
Yellow pondlily	Nuphar lutea	NVARI	20	13	2	0.0003
Curlyleaf pondweed	Potamogeton crispus	PCRI	22	0	4	<0.0001
Leafy pondweed	Potamogeton foliosus	PFOL	17	6	0	<0.0001
Variable pondweed	Potamogeton gramineus	PGRAM	0	0	0	M
Illinois pondweed	Potamogeton illinoensis	PILL	16	10	4	0.0198
Floating pondweed	Potamogeton natans	PNAT	0	1	1	0.5962
Whitestem pondweed	Potamogeton praelongus	PPRA	1	9	11	0.0090
Richardson's pondweed	Potamogeton richardsonii	PRICH	10	12	6	0.3373
Robbin's pondweed	Potamogeton robbbinsii	PROBB	1	0	0	0.3829
Flatstem pondweed	Potamogeton zosteriformis	PZOS	30	31	6	<0.0001
Widgeongrass	Ruppia cirrhosa	RCIRR	0	0	11	M
White water buttercup	Ranunculus longirostris	RLON	12	4	6	0.0188
Hardstem bulrush	Schoenoplectus acutus	SACU	12	21	18	0.1612
Arumleaf arrowhead	Sagittaria cuneata	SCUN	0	1	0	0.3670
Sago pondweed	Stuckenia pectinata	SPEC	0	2	2	0.3510
Narrowleaf cattail	Typha angustifolia	TANG	3	4	2	0.7158
Broadleaf cattail	Typha latifolia	TLAT	0	0	0	M
Common bladderwort	Utricularia macrorhiza	UMAC	0	17	20	<0.0001
Watercelery	Vallisneria americana	VAME	14	35	28	0.0004
Watermeal	Wolffia	WOOLF	0	0	0	M
Total species richness		SPP	20	23	25	
Native species richness		NATSPP	18	22	23	

Table 6. Dynamics of species in diquat-treated and untreated reference plots in the Detroit Lake system across three months in 2015; where a "+" indicates species that statistically increased, a "0" indicate species with no significant change, and a "-" indicates species with a significant decrease in frequency at points.

Common	'-" indicates species with a signific Scientific	CODE	1 Diquat	2 Diquat	Reference
Water marigold	Bidens beckii	BBEC	0	0	0
Flowering rush	Butomus umbellatus	BUMB	-	-	-
Coontail	Ceratophyllum demersum	CDEM	0	-	+
Chara	Chara	chara	0	+	0
Water moss	Drepanocladus	DREP	+	+	0
Elodea	Elodea canadensis	ECAN	0	0	0
Water stargrass	Heteranthera dubia	HDUB	+	0	+
Brownfruit rush	Juncus pelocarpus	JPEL	0	0	0
Common duckweed	Lemna minor	LMIN	0	0	0
Star duckweed	Lemna trisulca	LTRI	0	+	0
Northern watermilfoil	Myriophyllum sibiricum	MSIB	+	-	+
Bushy naiad	Najas flexilis	NFLEX	+	+	+
Nitella	Nitella	NITEL	0	0	0
White waterlily	Nymphaea odorata	NODOR	0	0	0
Yellow pondlily	Nuphar lutea	NVARI	0	-	-
Curlyleaf pondweed	Potamogeton crispus	PCRI	-	-	-
Leafy pondweed	Potamogeton foliosus	PFOL	-	-	-
Variable pondweed	Potamogeton gramineus	PGRAM	0	0	0
Illinois pondweed	Potamogeton illinoensis	PILL	-	-	-
Floating pondweed	Potamogeton natans	PNAT	0	-	0
Whitestem pondweed	Potamogeton praelongus	PPRA	0	-	+
Richardson's pondweed	Potamogeton richardsonii	PRICH	-	-	0
Robbin's pondweed	Potamogeton robbbinsii	PROBB	0	-	0
Flatstem pondweed	Potamogeton zosteriformis	PZOS	-	-	-
Widgeongrass	Ruppia cirrhosa	RCIRR	0	0	0
White water buttercup	Ranunculus longirostris	RLON	0	0	-
Hardstem bulrush	Schoenoplectus acutus	SACU	0	0	0
Arumleaf arrowhead	Sagittaria cuneata	SCUN	0	0	0
Sago pondweed	Stuckenia pectinata	SPEC	+	0	0
Narrowleaf cattail	Typha angustifolia	TANG	0	0	0
Broadleaf cattail	Typha latifolia	TLAT	0	0	0
Common bladderwort	Utricularia macrorhiza	UMAC	0	0	+
Watercelery	Vallisneria americana	VAME	+	+	+
Watermeal	Wolffia	WOOLF	0	0	0
	Increasers		6	5	7
	No change		22	17	20
	Decreasers		6	12	7

Table 7. Species prevalence at survey points in site DL-DIQ-1 in 2015.

SITE	DL-DIQ-1			
YEAR	2015	2015	2015	
MONTH	JUNE	AUG	SEPT	
DAY	19	5	16	
POINTS	20	20	20	
Bidens beckii	0	0	0	
Butomus umbellatus	13	7	0	
Ceratophyllum demersum	0	0	0	
Chara	20	20	20	
Drepanocladus	0	7	4	
Elodea canadensis	0	0	0	
Heteranthera dubia	0	0	0	
Juncus pelocarpus	0	0	0	
Lemna minor	0	0	0	
Lemna trisulca	0	2	2	
Myriophyllum sibiricum	0	0	0	
Najas flexilis	0	0	0	
Nitella	0	0	0	
Nymphaea odorata	0	0	0	
Nuphar lutea	6	8	2	
Potamogeton crispus	0	0	0	
Potamogeton foliosus	11	2	0	
Potamogeton gramineus	0	0	0	
Potamogeton illinoensis	5	9	7	
Potamogeton natans	0	0	0	
Potamogeton praelongus	2	3	1	
Potamogeton richardsonii	13	16	8	
Potamogeton robbinsii	0	0	0	
Potamogeton zosteriformis	4	2	0	
Ruppia cirrhosa	0	0	0	
Ranunculus longirostris	0	0	0	
Schoenoplectus acutus	10	9	7	
Sagittaria cuneata	0	0	0	
Stuckenia pectinata	0	0	0	
Typha angustifolia	0	0	0	
Typha latifolia	0	0	0	
Utricularia macrorhiza	0	1	0	
Vallisneria americana	17	17	13	
Wolffia	0	0	0	

Table 8. Species prevalence at survey points in site DL-DIQ-2 in 2015.

SITE		DL-DIQ-2	2
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	23	24	24
Bidens beckii	0	0	0
Butomus umbellatus	3	1	0
Ceratophyllum demersum	0	0	0
Chara	23	24	23
Drepanocladus	0	4	1
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	0
Myriophyllum sibiricum	0	2	1
Najas flexilis	0	0	1
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	1	0	0
Potamogeton crispus	0	0	0
Potamogeton foliosus	10	7	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	9	12	8
Potamogeton natans	0	0	0
Potamogeton praelongus	3	2	1
Potamogeton richardsonii	11	9	8
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	5	4	1
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	1
Sagittaria cuneata	0	2	0
Stuckenia pectinata	0	5	2
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	4	8	8
Wolffia	0	0	0

Table 9. Species prevalence at survey points in site DL-DIQ-3 in 2015.

SITE	DL-DIQ-3			
YEAR	2015	2015	2015	
MONTH	JUNE	AUG	SEPT	
DAY	19	5	16	
POINTS	25	25	25	
Bidens beckii	0	0	0	
Butomus umbellatus	12	3	1	
Ceratophyllum demersum	0	0	0	
Chara	20	25	24	
Drepanocladus	0	0	2	
Elodea canadensis	0	0	0	
Heteranthera dubia	0	0	0	
Juncus pelocarpus	0	0	0	
Lemna minor	0	0	0	
Lemna trisulca	0	2	0	
Myriophyllum sibiricum	4	2	1	
Najas flexilis	0	1	0	
Nitella	0	0	0	
Nymphaea odorata	0	0	0	
Nuphar lutea	0	0	0	
Potamogeton crispus	2	0	0	
Potamogeton foliosus	12	0	1	
Potamogeton gramineus	0	0	0	
Potamogeton illinoensis	4	4	3	
Potamogeton natans	0	0	0	
Potamogeton praelongus	1	0	0	
Potamogeton richardsonii	10	10	5	
Potamogeton robbinsii	0	0	0	
Potamogeton zosteriformis	7	4	0	
Ruppia cirrhosa	1	0	0	
Ranunculus longirostris	0	0	0	
Schoenoplectus acutus	1	0	0	
Sagittaria cuneata	0	0	0	
Stuckenia pectinata	0	0	0	
Typha angustifolia	0	0	0	
Typha latifolia	0	0	0	
Utricularia macrorhiza	0	0	0	
Vallisneria americana	11	18	18	
Wolffia	0	0	0	

Table 10. Species prevalence at survey points in site DL-DIQ-4 in 2015.

SITE	DL-DIQ-4			
YEAR	2015	2015	2015	
MONTH	JUNE	AUG	SEPT	
DAY	19	5	16	
POINTS	30	31	31	
Bidens beckii	0	0	0	
Butomus umbellatus	5	0	0	
Ceratophyllum demersum	0	0	0	
Chara	29	31	1	
Drepanocladus	4	2	3	
Elodea canadensis	0	0	0	
Heteranthera dubia	0	0	0	
Juncus pelocarpus	0	0	0	
Lemna minor	0	0	0	
Lemna trisulca	22	0	3	
Myriophyllum sibiricum	1	24	2	
Najas flexilis	0	0	0	
Nitella	0	0	0	
Nymphaea odorata	0	0	0	
Nuphar lutea	0	0	0	
Potamogeton crispus	0	0	0	
Potamogeton foliosus	1	0	0	
Potamogeton gramineus	0	0	0	
Potamogeton illinoensis	6	25	3	
Potamogeton natans	0	0	0	
Potamogeton praelongus	0	0	1	
Potamogeton richardsonii	0	4	0	
Potamogeton robbinsii	1	0	0	
Potamogeton zosteriformis	3	9	0	
Ruppia cirrhosa	0	0	0	
Ranunculus longirostris	0	0	0	
Schoenoplectus acutus	0	0	0	
Sagittaria cuneata	0	0	0	
Stuckenia pectinata	0	0	0	
Typha angustifolia	0	0	0	
Typha latifolia	0	0	0	
Utricularia macrorhiza	0	0	0	
Vallisneria americana	6	16	7	
Wolffia	0	0	0	

Table 11. Species prevalence at survey points in site DL-DIQ-5 in 2015.

SITE		DL-DIQ-5	5
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	20	20	20
Bidens beckii	0	0	0
Butomus umbellatus	9	4	0
Ceratophyllum demersum	0	1	1
Chara	19	19	19
Drepanocladus	5	5	8
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	1	1
Myriophyllum sibiricum	0	2	3
Najas flexilis	0	4	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	1	0	0
Potamogeton foliosus	3	0	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	0	4	1
Potamogeton natans	0	0	0
Potamogeton praelongus	0	2	0
Potamogeton richardsonii	1	4	0
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	0	3	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	1	14	11
Wolffia	0	0	0

Table 12. Species prevalence at survey points in site DL-DIQ-6 in 2015.

SITE		DL-DIQ-6	5
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	34	34	34
Bidens beckii	0	0	0
Butomus umbellatus	8	0	0
Ceratophyllum demersum	0	0	0
Chara	34	34	34
Drepanocladus	12	13	14
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	2
Myriophyllum sibiricum	2	2	0
Najas flexilis	0	3	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	3	2	1
Potamogeton crispus	5	0	0
Potamogeton foliosus	21	4	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	0	1	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	6	9	1
Potamogeton robbinsii	1	0	0
Potamogeton zosteriformis	0	1	1
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	10	25	14
Wolffia	0	0	0

Table 13. Species prevalence at survey points in site DL-DIQ-7 in 2015.

SITE	DL-DIQ-7		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	25	25	25
Bidens beckii	0	0	0
Butomus umbellatus	5	0	0
Ceratophyllum demersum	3	2	2
Chara	7	20	16
Drepanocladus	14	19	22
Elodea canadensis	0	1	0
Heteranthera dubia	0	0	1
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	2	14	18
Myriophyllum sibiricum	2	17	4
Najas flexilis	0	1	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	1	0	0
Potamogeton crispus	8	0	0
Potamogeton foliosus	3	4	0
Potamogeton gramineus	1	0	0
Potamogeton illinoensis	2	9	1
Potamogeton natans	0	0	0
Potamogeton praelongus	0	3	0
Potamogeton richardsonii	5	8	0
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	10	11	1
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	1	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	11	24	19
Wolffia	0	0	0

Table 14. Species prevalence at survey points in site DL-DIQ-8 in 2015.

SITE	DL-DIQ-8		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	43	44	44
Bidens beckii	0	0	0
Butomus umbellatus	6	0	0
Ceratophyllum demersum	0	1	1
Chara	42	44	44
Drepanocladus	0	13	11
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	0
Myriophyllum sibiricum	1	17	0
Najas flexilis	0	20	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	2	0	0
Potamogeton foliosus	27	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	3	6	1
Potamogeton natans	0	0	0
Potamogeton praelongus	1	0	2
Potamogeton richardsonii	3	8	4
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	1	1	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	23	38	23
Wolffia	0	0	0

Table 15. Species prevalence at survey points in site DL-DIQ-9 in 2015.

SITE	DL-DIQ-9		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	19	20	20
Bidens beckii	0	0	0
Butomus umbellatus	6	1	0
Ceratophyllum demersum	0	0	0
Chara	19	20	19
Drepanocladus	1	12	18
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	7	1
Myriophyllum sibiricum	1	8	1
Najas flexilis	0	2	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	0	0	0
Potamogeton foliosus	2	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	7	15	10
Potamogeton natans	0	0	0
Potamogeton praelongus	0	5	0
Potamogeton richardsonii	8	4	1
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	5	4	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	1	1
Vallisneria americana	9	12	17
Wolffia	0	0	0

Table 16. Species prevalence at survey points in site DL-DIQ-10 in 2015.

SITE	DL-DIQ-10		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	25	26	26
Bidens beckii	0	0	0
Butomus umbellatus	4	6	0
Ceratophyllum demersum	9	16	14
Chara	9	6	9
Drepanocladus	8	7	13
Elodea canadensis	2	1	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	20	26	24
Myriophyllum sibiricum	1	12	14
Najas flexilis	0	0	0
Nitella	0	2	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	15	0	0
Potamogeton foliosus	1	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	10	0	0
Potamogeton natans	0	0	0
Potamogeton praelongus	1	5	3
Potamogeton richardsonii	1	8	0
Potamogeton robbinsii	1	0	0
Potamogeton zosteriformis	9	13	6
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	1	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	5	2
Vallisneria americana	6	14	14
Wolffia	0	0	0

Table 17. Species prevalence at survey points in site DL-DIQ-11 in 2015.

SITE	D	L-DIQ-1	1
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	23	23	23
Bidens beckii	0	0	0
Butomus umbellatus	16	1	0
Ceratophyllum demersum	0	0	0
Chara	22	23	21
Drepanocladus	12	19	12
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	2
Myriophyllum sibiricum	1	0	0
Najas flexilis	0	1	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	7	7	4
Potamogeton crispus	5	1	0
Potamogeton foliosus	7	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	1	1	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	3	4	1
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	1	0	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	1
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	1	1	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	7	20	17
Wolffia	0	0	0

Table 18. Species prevalence at survey points in site DL-REF-1 in 2015.

SITE		DL-REF-1	L
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	21	21	21
Bidens beckii	0	0	0
Butomus umbellatus	2	2	0
Ceratophyllum demersum	3	12	9
Chara	4	5	7
Drepanocladus	3	3	4
Elodea canadensis	0	1	1
Heteranthera dubia	0	0	5
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	20	15	17
Myriophyllum sibiricum	5	14	9
Najas flexilis	0	0	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	16	0	3
Potamogeton foliosus	0	0	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	8	5	1
Potamogeton natans	0	0	0
Potamogeton praelongus	1	9	11
Potamogeton richardsonii	5	4	0
Potamogeton robbinsii	1	0	0
Potamogeton zosteriformis	15	14	4
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	4	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	2	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	3	5
Vallisneria americana	3	11	8
Wolffia	0	0	0

Table 19. Species prevalence at survey points in site C-DIQ-1 in 2015.

SITE		C-DIQ-1	
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	9	9	9
Bidens beckii	0	0	0
Butomus umbellatus	6	0	0
Ceratophyllum demersum	2	2	2
Chara	7	9	9
Drepanocladus	0	1	0
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	6	5	3
Myriophyllum sibiricum	4	6	4
Najas flexilis	0	2	2
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	8	7	4
Potamogeton crispus	3	0	1
Potamogeton foliosus	5	0	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	2	0	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	4	6	5
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	4	5	1
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	3	4	3
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	1
Vallisneria americana	0	9	8
Wolffia	0	0	0

Table 20. Species prevalence at survey points in site C-DIQ-3 in 2015.

SITE	C-DIQ-3		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	32	33	33
Bidens beckii	0	0	0
Butomus umbellatus	20	4	1
Ceratophyllum demersum	3	2	1
Chara	29	33	33
Drepanocladus	0	1	1
Elodea canadensis	1	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	6	5	3
Myriophyllum sibiricum	11	16	0
Najas flexilis	0	14	3
Nitella	0	0	1
Nymphaea odorata	0	0	0
Nuphar lutea	15	17	5
Potamogeton crispus	9	0	0
Potamogeton foliosus	23	4	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	8	6	0
Potamogeton natans	4	0	0
Potamogeton praelongus	0	0	1
Potamogeton richardsonii	4	7	2
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	6	3	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	1	0	0
Schoenoplectus acutus	4	3	4
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	1	0
Typha angustifolia	2	1	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	2	21	14
Wolffia	0	0	0

Table 21. Species prevalence at survey points in site C-REF-1 in 2015.

SITE	C-REF-1		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	19	5	16
POINTS	14	14	14
Bidens beckii	0	0	0
Butomus umbellatus	6	2	0
Ceratophyllum demersum	0	1	5
Chara	12	14	13
Drepanocladus	0	3	3
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	1	1	1
Myriophyllum sibiricum	0	7	1
Najas flexilis	0	7	5
Nitella	0	0	0
Nymphaea odorata	0	3	0
Nuphar lutea	5	6	1
Potamogeton crispus	3	0	0
Potamogeton foliosus	7	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	1	0	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	2	3	2
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	3	4	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	3	4	2
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	1	13	12
Wolffia	0	0	0

Table 22. Species prevalence at survey points in site S-DIQ-1 in 2015.

SITE	S-DIQ-1		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	3	17
POINTS	41	42	42
Bidens beckii	0	0	0
Butomus umbellatus	23	5	0
Ceratophyllum demersum	0	5	1
Chara	27	41	38
Drepanocladus	0	5	6
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	2
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	10	14
Myriophyllum sibiricum	2	5	5
Najas flexilis	0	8	6
Nitella	0	0	0
Nymphaea odorata	4	10	6
Nuphar lutea	1	1	0
Potamogeton crispus	2	0	0
Potamogeton foliosus	4	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	6	12	2
Potamogeton natans	0	0	0
Potamogeton praelongus	0	1	0
Potamogeton richardsonii	15	24	27
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	8	5	5
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	3	2	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	3
Vallisneria americana	11	38	40
Wolffia	0	0	0

Table 23. Species prevalence at survey points in site S-DIQ-2 in 2015.

SITE	S-DIQ-2		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	3	17
POINTS	5	5	5
Bidens beckii	0	0	0
Butomus umbellatus	2	0	0
Ceratophyllum demersum	0	0	0
Chara	4	5	5
Drepanocladus	0	0	0
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	0
Myriophyllum sibiricum	0	0	0
Najas flexilis	0	0	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	2	0	0
Potamogeton foliosus	0	0	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	2	2	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	0	3	4
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	1	0	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	2	5	5
Wolffia	0	0	0

Table 24. Species prevalence at survey points in site S-DIQ-3 in 2015.

SITE	S-DIQ-3		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	3	17
POINTS	25	25	25
Bidens beckii	0	0	0
Butomus umbellatus	7	0	0
Ceratophyllum demersum	0	0	0
Chara	21	25	25
Drepanocladus	0	2	1
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	1
Myriophyllum sibiricum	1	1	0
Najas flexilis	0	1	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	10	0	0
Potamogeton foliosus	4	0	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	6	3	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	12	14	15
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	6	1	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	11	21	15
Wolffia	0	0	0

Table 25. Species prevalence at survey points in site S-REF-1 in 2015.

SITE		S-REF-1	
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	3	17
POINTS	35	34	33
Bidens beckii	0	0	0
Butomus umbellatus	28	23	15
Ceratophyllum demersum	6	25	15
Chara	20	12	4
Drepanocladus	1	6	2
Elodea canadensis	9	8	8
Heteranthera dubia	0	0	3
Juncus pelocarpus	0	0	0
Lemna minor	0	0	1
Lemna trisulca	10	24	25
Myriophyllum sibiricum	12	24	18
Najas flexilis	0	1	4
Nitella	0	0	0
Nymphaea odorata	8	14	11
Nuphar lutea	15	7	1
Potamogeton crispus	3	0	1
Potamogeton foliosus	10	5	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	7	5	3
Potamogeton natans	0	1	1
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	3	5	4
Potamogeton robbinsii	0	0	0
Potamogeton zosteriformis	11	13	2
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	8	4	3
Schoenoplectus acutus	12	21	18
Sagittaria cuneata	0	1	0
Stuckenia pectinata	0	0	2
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	14	15
Vallisneria americana	10	11	8
Wolffia	0	0	0

Table 26. Species prevalence at survey points in site M-DIQ-1 in 2015.

SITE	M-DIQ-1		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	21	4	18
POINTS	19	20	20
Bidens beckii	0	0	0
Butomus umbellatus	4	0	0
Ceratophyllum demersum	0	0	1
Chara	18	20	19
Drepanocladus	0	0	1
Elodea canadensis	0	1	0
Heteranthera dubia	0	0	2
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	2
Myriophyllum sibiricum	1	8	2
Najas flexilis	0	6	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	0	0	2
Potamogeton foliosus	2	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	8	6	0
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	1
Potamogeton richardsonii	6	15	5
Potamogeton robbinsii	0	2	0
Potamogeton zosteriformis	4	6	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	1	14	7
Wolffia	0	0	0

Table 27. Species prevalence at survey points in site M-DIQ-2 in 2015.

SITE	M-DIQ-2		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	4	17
POINTS	19	20	20
Bidens beckii	0	0	0
Butomus umbellatus	2	4	0
Ceratophyllum demersum	0	2	2
Chara	19	20	20
Drepanocladus	0	0	4
Elodea canadensis	1	0	0
Heteranthera dubia	0	0	1
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	1	0
Myriophyllum sibiricum	5	20	4
Najas flexilis	0	1	0
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	1	0	0
Potamogeton foliosus	1	2	0
Potamogeton gramineus	1	0	0
Potamogeton illinoensis	14	17	6
Potamogeton natans	0	0	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	6	8	2
Potamogeton robbinsii	0	2	0
Potamogeton zosteriformis	4	11	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	1	0	0
Vallisneria americana	1	18	5
Wolffia	0	0	0

Table 28. Species prevalence at survey points in site M-DIQ-3 in 2015.

SITE	ſ	M-DIQ-3	3
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	20	4	18
POINTS	31	32	32
Bidens beckii	0	0	0
Butomus umbellatus	1	1	0
Ceratophyllum demersum	0	0	3
Chara	25	32	31
Drepanocladus	0	1	0
Elodea canadensis	1	7	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	1	2	0
Myriophyllum sibiricum	9	19	19
Najas flexilis	0	9	1
Nitella	0	0	0
Nymphaea odorata	0	0	0
Nuphar lutea	0	0	0
Potamogeton crispus	1	1	0
Potamogeton foliosus	5	10	1
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	21	17	21
Potamogeton natans	3	3	0
Potamogeton praelongus	0	1	0
Potamogeton richardsonii	8	12	7
Potamogeton robbinsii	0	6	6
Potamogeton zosteriformis	9	6	7
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	12	12	12
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	2	8
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	1
Vallisneria americana	2	9	10
Wolffia	0	0	0

Table 29. Species prevalence at survey points in site M-DIQ-4 in 2015.

SITE	M-DIQ-4		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	21	4	18
POINTS	27	27	27
Bidens beckii	0	0	0
Butomus umbellatus	7	1	0
Ceratophyllum demersum	1	1	1
Chara	25	27	26
Drepanocladus	9	5	5
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	3	4
Myriophyllum sibiricum	2	6	8
Najas flexilis	0	9	1
Nitella	0	0	0
Nymphaea odorata	1	2	1
Nuphar lutea	0	1	0
Potamogeton crispus	4	2	0
Potamogeton foliosus	0	1	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	4	13	10
Potamogeton natans	0	0	0
Potamogeton praelongus	1	0	0
Potamogeton richardsonii	9	10	10
Potamogeton robbinsii	0	0	1
Potamogeton zosteriformis	8	9	4
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	1	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	1	0
Vallisneria americana	2	13	16
Wolffia	0	0	0

Table 30. Species prevalence at survey points in site M-DIQ-5 in 2014.

SITE	M-DIQ-5		
YEAR	2015	2015	2015
MONTH	JUNE	AUG	SEPT
DAY	21	4	18
POINTS	31	31	31
Bidens beckii	0	0	0
Butomus umbellatus	8	4	0
Ceratophyllum demersum	0	5	0
Chara	30	31	31
Drepanocladus	1	0	0
Elodea canadensis	0	0	0
Heteranthera dubia	0	0	0
Juncus pelocarpus	0	0	0
Lemna minor	0	0	0
Lemna trisulca	0	0	0
Myriophyllum sibiricum	14	12	7
Najas flexilis	0	2	0
Nitella	0	0	0
Nymphaea odorata	0	1	0
Nuphar lutea	0	1	0
Potamogeton crispus	5	0	0
Potamogeton foliosus	11	3	0
Potamogeton gramineus	0	0	0
Potamogeton illinoensis	25	23	11
Potamogeton natans	0	6	0
Potamogeton praelongus	0	0	0
Potamogeton richardsonii	16	20	9
Potamogeton robbinsii	0	6	0
Potamogeton zosteriformis	11	11	0
Ruppia cirrhosa	0	0	0
Ranunculus longirostris	0	0	0
Schoenoplectus acutus	0	0	0
Sagittaria cuneata	0	0	0
Stuckenia pectinata	0	0	0
Typha angustifolia	0	0	0
Typha latifolia	0	0	0
Utricularia macrorhiza	0	0	0
Vallisneria americana	5	24	12
Wolffia	0	0	0