Research concentrations at MSU-Stennis and as a consultant

« Statistical schemes

* Tropical cyclones

e Storm surge

« Commercialization activities

» Deepwater Horizon oil spill

* Model validation

» Mesoscale meteorology/sea breeze

« Wave Glider® Field Program

* CONSsortium for oil spill exposure pathways in
COastal River-Dominated Ecosystems (CONCORDE)

» Knowledge transferred as commercial products to Barons and WorldWinds



Storm surge applications in the geosciences

Pat Fitzpatrick and Yee Lau
Mississippi State University

Storm surge is an abnormal rise of water associated with a cyclone, not including tidal influences

Low pressure system can be a baroclinic cyclone, tropical cyclone, or a hybrid of the two.



Fundamental surge components

Pressure set_uR - increase in water level due to lower atmospheric pressure in storm
interior. A slight surface bulge occurs within the storm, greatest at the storm’s center,
geocreaﬁlng at the storm’s péeriphery. For every 10-mb pressure drop, water expands

.0 inches.

* Effectis a constant

Wind setup - increase in water level due to the force of the wind on the water. As the
transported water reaches shallow coastlines, bottom friction slows their motion,
causing water to pile up. Further enhanced near land boundaries.

* Depends on bathymetry, size, and intensity. MOST IMPORTANT IN TERMS OF
MAGNITUDE FOR SHALLOW WATER BATHYMETRIES!

Geostrophic adjustment — water levels adjust to a developing longshore current.

Impact increases for slow-moving tropical cyclones
Impact increases for larger tropical cyclones
Causes a storm surge “forerunner”

Generally second in importance; *may* be most important in deep water
bathymeétries

Wave setu? - increase due to onshore waves. Incoming water from wave breaking
exceeds retreating water after wave runup.

— Impact minor in shallow bathymetry (0.5-1 ft); may contribute up to 3 ft surge in
deep bathymetry (still the subject of debate)



decreasing
pressure

Pressure setup

Deep Water Landfall

a. Top View of Sea Surface

Wind setup

Wave setup




Geostrophic adjustment
(creates surge “forerunner”)

War.. . Coriolis force
fbg'? " pulls this way

when these two forces
balance each other we say that
we have geostrophic balance

Pressure gradient
pulls this way

The slower the hurricane moves, or the larger the hurricane,
/ the more the impact (Fitzpatrick et al. 2012)

The balance between pressure gradient forces and Coriclis forces on a parcel of water is what we call geostrophic balance.

http://www.seos-project.eu/modules/oceancurrents/oceancurrents-c06-s02-p01.html



Pressure effect
(peaks at landfall)

Surge forerunner
(peaks before landfall)

Wind effect

(peaks at landfall)
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Other components for consideration

* Tide

e Steric setup — (water expansion or contraction from water temperature, small)
* Nonlinear advection (small, neglected in some models)

* Dissipation terms

Note that, in two dimensions, all eight interactions become more complicated



Surge varies due to different bathymetries and boundaries
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Thought question --- where would surge be worse for a major hurricane?



Effect of hurricane intensity, size, and speed on storm surge

Cat 1, 3, 5 hurricanes, average size, average speed

a5

* Veary Shallow
B Shallow

] & Moderate

-'.J Deap
() Vary Deep

Storm Surge (faat)

Correction factors for speed and size
Size

Zone 2: + 1.5 (Cat 3-5)

Zone 3: £ 1.0 (Cat 1-2), = 1.8 (Cat 3),

Zone 4: + 1.6 (Cat 1-2), + 2.5 (Cat 3),
Zone 5: + 2.3 (Cat 1-2), + 3.3 (Cat 3),

Speed
Zone 4: + 1.5 (Cat 1-2), + 2.0 (Cat 3),
Zone 5: + 3.0 (Cat 1-2), + 3.9 (Cat 3),

+ 2.5 (Cat 4-5)
+ 3.8 (Cat 4-5)
+ 4.3 (Cat 4-5)

4 2.8 (Cat 4-5)
4 5.2 (Cat 4-5)



Observed Open Coast Peak Eyewall Surge
for Different Zones
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Surge modeling — SLOSH or ADCIRC
* Forecasting

e Scientific studies

* Mitigation

* legal cases



Simulation of coastal regions — Large Domain Strategy

Correctly capture

East coast, Gulf W @ s
= Basin to basin interactions & Caribbean Grid__ 8= =

= Basin to shelf dynamics

= Shelf to adjacent coast/land dynamics
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Computer simulation of Katrina storm surge in Louisiana marsh
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Computer simulation of Katrina storm surge in Louisiana marsh

. 11:30AM
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Scientific studies



Impact of levees
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Katrina_Envelope(WShaffer)(NoLevee-WithLevee)
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Contribution from large canals



New Orleans and eastern marsh system

5t Tammany

. Signatures |} Bookmarks




ADCIRC simulations with MRGO open (blue)
and closed (red)

Bayou Dupre

WSE (ft. MSL)

Time [Hours)

Little impact of the MRGO on the storm surge at Bayou Dupre south of Lake Borgne.
This result is typical throughout the region.



Impact of Katrina Cat 5 offshore
versus Cat 3 offshore



ADCIRC Surge (Cat5-Cat3) (2005082913)
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Katrina’s offshore Cat 5 contribution less than 1 ft in most places



Mitigation

* |nsurance rates

 Base flood levels for mitigation
i. New Orleans levees
ii. Nuclear power plants



Example - “100-year” surge events

One hundred year level of protection means reducing risk from a storm surge
that has a 1% chance of being equaled or exceeded in any given year.

Based on the combined chances of a storm of a certain size and intensity
following a certain track. Different combinations of size, intensity and track can
result in a 100-year surge event.

Also called a 100-year return period.

Bad term, since the probability of a 100-year surge event occurring in 30 years
(the lifetime of avg mortgage) is 26%

(Can also develop metrics for 500-year events, 10,000 year events, etc.)



Return periods, U.S. hurricanes
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From http://www.nhc.noaa.gov/climo/, data based on 1900-2010



http://www.nhc.noaa.gov/climo/

Return periods, U.S. major hurricanes
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http://www.nhc.noaa.gov/climo/

Surge very sensitive to track and intensity in SE Louisiana

Coastal Emergency Risks Assessment

on [ 2005 xaTRn - s 205 coRa

Maximum Water Height (History)
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Track Natonal Humcane Center best track

Figure 3.29 Map of the estimated maximum storm surge during Hurricane Katrina.



Coastal Emergency Risks Assessment
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Figure 3.28 Map of the estimated maximum storm surge during Hurricane Gustav.



" Coastal Erhergency Risks Assessment

Maximum Water Height (History)
Hindcast Time Range: Tue, 21-Aug-2012 1 PM CDT - Thu, 30-Aug-2012, 1 PM COT
Storm ISAAC, Hindcast sy
Track National Humcane Center best track
16-Aug - 30-Aug 2012

Figure 3.27 Map of the estimated maximum storm surge during Hurricane Isaac.



How “100-year” surge event is determined

* Develop probability distributions for each storm
parameter (size, intensity, etc.) from observations

* Establish rate of storm occurrence in space and time
* Construct hypothetical storm tracks

* Conduct storm surge simulations

* Determine rate of occurrence for each storm

* Compute highest surge for locations of interest, tag it with
rate of occurrence

* Construct a histogram of rate versus surge height
* Find the 1% surge elevation for each location

Summary: All possible storms are considered, weighted to
appropriate rate of occurrence, and a probability
distribution is derived from the sample



Table 1. Summary of the 152 HSDRRS JPM-05 hurricane tracks, stratified by central pressure, radius of masimum winds,
translation speed, track direction, primary and se condary plus intensity (3affir-5impson scale), and numberof storms in each
group. From Jacobsen (2013).
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Selection of Synthetic Storms

Hypothetical Storm tracks and track of Hurricane Katrina
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Example 100-year surge curves for southshore
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Legal cases



Wind and surge time series
for litigation purposes

“wind versus water” cases



Hurricane Katrina (Adcirc Simulation)

TimeSerles for August 29th 10Z through 182
Lon=-89.190, Lal=30.185
Bay_St.Louis (East_Gulf)
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Produet of Mississippi State University, Geo Resources Instit ute, Stennis Space Center.



Time series of sustained wind, wind gust, and surge in Bay St. Louis

Wind Storm surge Inundation in
Time Sustained gusts relative to sea Storm surge relative to house (feet)
(Aug. 29) | wind (mph) (mph) level (feet) land (feet)
40 3.5 house dry
1:00AM (northeast) 50 land dry
o4 4.0 house dry
4:00AM (northeast) 68 land dry
58 (east- 6.0 2.0 (land partly house dry
5:30AM northeast) 80 inundated)
71 (east- 6.3 house dry
6:30AM northeast) 110 2.3
83 (east- 6.6 house dry
7:00AM northeast) 120 2.6
99 (east- 8.0 house dry
8:30AM northeast) 130 4.0
110 (east- 8.5 house dry
9:30AM southeast) 140 45
102 (east- 10.0 house dry
10:00AM | southeast) 135 6.0
13.0 occasional
93 inundation from
10:30AM | (southeast) 110 9.0 1-foot waves
79 20.5 6.0
11:30AM | (southeast) 95 16.5
12:00PM | 72 (south) 85 22.2 18.2 8.2
60 (south- 18.5 4.5
1:00PM southwest) 75 145
43 8.5 house dry
4:00PM (southwest) 55 4.5




Time series of sustained wind, wind gust, and surge in Bay St. Louis

Time (Aug. 29) Wind (mph) Wind gust (mph) Storm surge (feet)
3:00AM 40 (east-northeast) 46 4

5:30AM 75 (east-northeast) 97 6

6:30AM 86 (northeast) 112 6

8:30AM 103 (east) 140 9

9:30AM 120 (southeast) 145 13

10:30AM 100 (south) 115 22

11:30AM 90 (west) 104 19

12:30PM 80 (west) 92 16

Numerous squall lines passed through the area after 3AM.

Tropical storm-force winds begin after midnight.
Hurricane-force winds begin around 5AM.



Environmental issues

 Exposes fragile marsh due to nutrient overload
 Deepwater Horizon oil incursions due to cyclones



Wetland loss associated with hurricane storm surge

near the Caernarvon freshwater diversion
Pat Fitzpatrick*, Yee Lau*, Jim Chen?, Kelin Hu”?, Valentine Anantharaj”, and Suzanne Shean*

* Miss State Univ --- Stennis A Louisiana State Univ  # Oak Ridge National Laboratory
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Where did land go? West towards MS River




Delacroix, Louisiana: PhotoF
of Shearing After Hurricanes Katrin

Photo Date: Nov. 18,2005
Referénces Map ID*OSGS NWRE 2006-11-0185 : - : o T, From BarTaS

U.S. Geological Survey




Outfall Marsh

East Control
' in direct path of
Katrina




Soil Quality: with long-term (30+ years) river water
influx decomposition appears enhanced (same plant
community, Panicum hemitomon)

River water Rain water

- No difference in year-
end standing biomass

- No difference in
accretion rates

BUT:
- Soil is much more
decomposed

- links to river water
include sulfate, nitrate,
alkalinity

EUSGS



From Howes et al. 2010

A Shear Strength [ Pa ]
00 5,000 10,000 15,000 20,000 25,000
: * . e e
20 o e v S E -
s eoF® ' '
ol 8% e ﬁ .. 5
E | s ° g Bl |
S % . - :
= 60 A TH S ]
E— .3 ” o, . : :
80+  BR Y ; : i
| ® . ! |
100} ¢ Voo v saline |
. f . e freshwater
120 | I r i

Reference: Howes et al., 2010, Hurricane-induced failure of low salinity wetlands, Proceedings of the National Academy
of the United States of America, 107(32), pp. 14014-14019.



Deepwater Horizon oil movement
due to surge effects from cyclones



Oil Order

10

Lake Borgne and Lake Pontchartrain oil spill observations

SCAT-LA Oil Observations - Region 3
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Oil spill simulation from
6/20/10-7/10/10

using AMSEAS NCOM data

Note inshore
movement of oil
starting late June
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Closing thought before exercise

* Find a technical specialty, and learn everything about it

e Learn to use technology, software, and programming languages
* Learn statistics and mathematics

* Learn to write technical reports

* The applications can be diverse and the opportunities surprising. Keep your eyes
open and meet as many people as possible

e Career opportunities for scientists have shifted. More possibilities in the private
sector, less in government. And more government jobs now require writing
proposals to sustain funding in a budget cut environment, a sometimes unpleasant
situation (but still rewarding in the right job)



(switch to surge exercise)






y (north)

X (east)
Assume x is parallel to beach
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v (north) Overhead view

% (east)
Assume x is parallel to beach

Mean sea level
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