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Abstract—Ontologies are widely used to represent knowledge
in different domains. As a result, numerous methods have been
put forth to match ontologies. No technique has been shown to
be robust across all domains. Furthermore, ontology matchers
typically make use of a reference ontology. However, this is not
guaranteed to exist. In this article, the fuzzy integral is used
to aggregate multiple ontology matchers in lieu of a reference
ontology. Specifically, we present a way to derive the fuzzy
measure based on ideas from crowd sourcing when the worth
of individuals is not known. Preliminary results are presented to
show the robustness of our approach across different domains.

Keywords—Ontology matching, fuzzy measure, fuzzy integral,
crowd sourcing, measure of agreement

I. INTRODUCTION

An ontology is a knowledge representation language.
Specifically, it is a set of concepts and relationships be-
tween those concepts to describe a certain knowledge domain.
Ontologies have been used in many disciplines, especially
biology (e.g., the gene ontology [4]). Different researchers
have designed distinct ontologies with respect to various
domains. This often causes redundancy as many ontologies
may partially, or fully, overlap. Ontology matching techniques
have been proposed to help address and mitigate this challenge.
In the last decade, many matchers have been put forth. A
recent survey is presented in [2]. In order to improve stability,
several aggregation methods have been used to combine results
from different matchers [1, 14, 21]. Many datasets have been
deployed to evaluate the performance of ontology matchers
and their aggregation such as the OAEI [12] and I3CON
[13]. Metrics such as Precision, Recall and Fmeasure are
used to evaluate the performance of different matchers and
their aggregation. These metrics rely on using a reference
ontology. A reference ontology (R) is an alignment, designed
by experts, contains exact matching between two ontologies.
However, real world problems are typically not provided a
reference ontology. Otherwise, there is no need for the help
of matchers in the first place. Experiments demonstrate that
matchers behave distinctively when used on different domains.
Therefore, without a reference ontology, there is no way to find
the best matcher with respect to a certain domain.

The goal of this article is to create a technique to fuse
multiple matchers using the fuzzy integral (FI) based on ideas
from crowd sourcing. The main contribution of this article is

the idea of extracting how to aggregate the matchers based on
agreement, versus a prior non-flexible assignment of worth
to the different matchers (which is often not known). In
this respect, aggregation is flexible and can change with the
problem and domain (versus a global solution which does not
likely exist). Namely, we propose a fuzzy measure (FM) of
agreement that we previously applied to crowd sourcing.

This paper is organized as follows. Section II presents
related work in ontology matcher aggregation. The process of
ontology matching is then described in section III. Foundations
of the FM and FI are provided in section IV and a FM of
agreement is defined in section IV. Experiments, preliminary
results and evaluation are presented in section V. Section VI
concludes the paper and it discusses the future work.

II. RELATED WORK

A number of works have been put forth in the literature
regarding combining several ontology matching techniques. In
[14, 21], the authors used a genetic algorithm (GA) to learn the
weight of each matching algorithm for an operator like or is the
weighted sum. In [1], we put forth a more powerful non-linear
aggregation based on the FI. Although these works improve the
reliability of matching by aggregating multiple methods; these
works used mechanisms (fitness functions) that depend on a
reference ontology. Therefore, none of these methods are ap-
plicable when the reference ontology is not available. Without
the reference ontology, all existing aggregation methods fail to
capture the importance of each individual matcher and likely
result in less than desirable performance. Herein, a unique way
to measure agreement can address this gap. The claim is, if
we cannot determine the worth of each matcher with respect
to a certain domain, then we look towards the agreement to
help improve the robustness of an approach. The question is
how to do this for ontology matching?

III. ONTOLOGY MATCHING AND EVALUATION

A. Ontology Matching

Ontology matching is a process that tries to find, for each
concept within one ontology (the source), the closest matched
concept in the second ontology (the destination). There are
several techniques to tackle this problem which can be based
on: statistical analysis, string similarity, linguistic methods,



taxonomy analysis, data analysis, graph-mapping, data-type
comparison, and inheritance analysis [14]. The output of the
matching process is called alignment (A). The alignment con-
sists of a set of cells, and each cell contains two terms, relation
type and measure value. The alignment and the reference
ontology are used to evaluate matching algorithms.

B. Ontology matcher evaluation

Several metrics, originally from the information retrieval
field [19], have been adopted in the evaluation process such
as semantic Precision (P) and Recall (Re) [7]. The precision
reflects the accuracy of the matching algorithm, i.e., it answers
the question how many cells in the alignment are also found
in the reference? The precision is:

P =
|A ∩R|
|A|

. (1)

Recall determines the completeness of the matching algorithm,
i.e., it answers the question how many correct matches are
found by a matcher? The Recall is:

Re =
|A ∩R|
|R|

. (2)

Finally, Fmeasure (F) is a compound metric that reflects both
correctness and completeness,

F =
2 · P ·Re
P +Re

. (3)

We notice that all the previous metrics depend on R, which is
always missing in real world applications.

IV. FUZZY MEASURE OF AGREEMENT

A. Fuzzy measure and integral foundations

The FI, introduced by Sugeno [17], is a powerful tool for
data fusion and aggregation. The FM encodes the importance
of various subsets of input sources and the FI is defined with
respect to the FM. The FI has been widely used in different
engineering fields such as multi-criteria decision making [8],
image processing [18], and even robotics [16].

For a non-empty finite set of N input sources, X =
{x1, x2, ..., xN}, the FM is a (set-valued) function g : 2X →
[0, 1]. The FM has three properties [9]:

(1) g(∅) = 0, g(X) = 1 (boundary conditions),
(2) For A,B ⊆ X , such that A ⊆ B, g(A) ≤ g(B) (the
monotonicity constraint).
(3) If An ∈ X and A1 ⊆ A2 ⊆ A3 ⊆ ... , then
limn→∞ g(An) = g(limn→∞An). However, this property
is not applicable in the case of finite sets..

The FM can be discussed in terms of its corresponding
lattice, which is induced by the monotonicity constraints. The
value in each node in the lattice is the measure for a certain
subset of sources, i.e., the worth of a particular group. Figure
1 is an illustration of the FM for N = 3.

There are multiple ways to build the FM. In some appli-
cations, experts can manually define the measure. However,
it might be very difficult, if possible at all, to determine all

Fig. 1: Lattice representation of the FM for N = 3.

values other than the singletons. In other settings, data-driven
learning methods are used to learn the measure. One method
is to have a quadratic program (QP) to learn the measure
based on a given data set [8]. However, the QP’s complexity
is relatively high and it does not scale well [15]. In order to
reduce the complexity, several optimization techniques have
been considered to learn the measure such as GAs [1, 3].
Furthermore, when we have a relatively small number of input
sources and the values of the singletons are known, measure
building techniques are employed, e.g., a S-Decomposable
measure such as the Sugeno λ-fuzzy measure [9]. The Sugeno
λ-measure is one of the well-known and widely used FMs. In
the λ-measure, several sources can be combined using the rule

g(A ∪B) = g(A) + g(B) + λg(A)g(B), (4)

where λ is calculated using the formula

λ+ 1 =

N∏
i=1

(1 + λgi), λ > −1. (5)

Data is aggregated using the FI based on the FM. The FI
can take many forms, two of which we focus on here. For
a finite set X = {x1, x2, ..., xN}, the discrete Sugeno and
Choquet FIs are∫

Sugeno

h ◦ g =

N∨
i=1

(
h(xπ(i)

) ∧G(xπ(i)
)
)
, (6)

∫
Choquet

h ◦ g =

N∑
i=1

h(xπ(i)
)
[
G(xπ(i)

)−G(xπ(i−1)
)
]
, (7)

where:
- h is the partial support function, h : X → [0, 1].
- h(xπ(i)

) is the evidence provided by source π(i).
- π is a re-permutation function such that h(xπ(1)

) ≥
h(xπ(2)

) ≥ ... ≥ h(xπ(N)
).

- The value G(xπ(i)
) = g({xπ(1)

, xπ(2)
, ..., xπ(i)

}) is the
measure of a set of information sources.
- G(xπ(0)

) = 0.

Note, both the
∫
Sugeno

h ◦ g and the
∫
Choquet

h ◦ g are

bounded between
[
N∧
i=1

h(xi),
N∨
i=1

h(xi)

]
and its method of

aggregation is often anecdotally explained as “the best pes-
simistic agreement”.



B. Measure of Agreement

In [20] we proposed a FM of agreement between N
interval-valued inputs. That work was extended in [10] to
overcome a natural bias with respect to the length of intervals.
Herein, we consider the extension of this FM, gAG, for ontol-
ogy matchers. The result of an ontology matcher is a matrix
of similarity values. Specifically, we put forth a similarity
calculation based on the population standard deviation. It
computes agreement between multiple ontology matchers in
the context of gAG.

A number of works have been put forth in the literature
regarding distance and similarity indices. A recent survey is
presented in [5]. However, all these measures compute the
similarity between two objects only. In our case, we have a set
of N input sources. Each one represents a (l∗h) matrix which
resulted from a matching algorithm where l (h respectively)
is the number of terms in the source (destination respectively)
ontology. Herein, we need to calculate the similarity between
all combinations of sources, i.e., between multiple matrices.

The population standard deviation is a statistical measure
that shows the variation in the values of elements in the popula-
tion, compared to the population mean value. For a population
of M elements, Y = {y1, y2, ..., yM}, the population standard
deviation is

σ =

√√√√ 1

M

M∑
i=1

(yi − µ)2, (8)

µ =

M∑
i=1

yi

M
. (9)

Herein, σ is used to measure distance between two or more
matrices. Herein, gAG is defined as

gAG(A0) = gAG(A1) = 0,

gAG(Ai) =

∣∣∣∣∣ i−1∨k1=1

i∨
k2=k1+1

dσ(Cπ(k1)
, Cπ(k2)

)

∣∣∣∣∣ z2 +∣∣∣∣∣ i−2∨k1=1

i−1∨
k2=k1+1

i∨
k3=k2+1

dσ(Cπ(k1)
, Cπ(k2)

, Cπ(k3)
)

∣∣∣∣∣ z3 +
...+ dσ(Cπ(1)

, Cπ(2)
, ..., Cπ(i)

)zi, i = [2 : N ],

where

dσ(Cπ(1)
, Cπ(2)

, ..., Cπ(i)
) =

l∑
q=1

h∑
j=1

(
1−σ

(
Cπ(1) (q,j),Cπ(2) (q,j)...,Cπ(i) (q,j)

))
l∗h ,

such that A0 = ∅, Ai = {Cπ(1)
, Cπ(2)

, ..., Cπ(i)
} is the

permuted set of matrices such that Ci is matrix resulted from
input source (matching algorithm) xi, zi is the weight of each
term such that z2 ≤ z3 ≤ ... ≤ zN (zi can take any value, such
as i

N , which puts more importance on larger sets of sources),
and max is used as a t-conorm (

∨
) operator. Note, since the

values are each matrix are in [0,1], σ is also bound in [0,1].
Therefore, 1− σ ∈ [0, 1].

In [10] we proved that gAG is monotonic and non-
decreasing. Also, in order to guarantee the boundary conditions

(g(∅) = 0 and g(AN ) = 1), gAG is normalized by

g̃AG(Ai) =
gAG(Ai)

gAG(AN )
. (10)

The following two descriptions help to describe the inner
workings of g̃AG :

(1) The worth of an individual is defined to be zero. The
proposed measure of agreement is based on groups of
individuals and their consensus.
(2) The agreement of a set of matchers includes the worth
of all sub-combinations to better characterize and account
for all sub-agreement in the smaller groups.

V. EXPERIMENTS AND RESULTS

In this section, several experiments were performed to show
how the proposed technique behaves on different knowledge
domains. We prefer the use of the I3CON [13] dataset over
OAEI [12] for two reasons. First, I3CON provides a set of on-
tologies from diverse knowledge domains while OAEI focuses
only on the bibliographic references domain. Having a wide
range and real life related domains helps to support our claim
that different ontology matchers have different performance
characteristics in different domains. Also, all tests in OAEI
(except one) are systematically built, and researchers take that
into consideration when designing their matchers. Therefore,
matchers might not cover all cases found in real life problems.

Several tests were performed, and we compared the perfor-
mance of our aggregation relative to the individual matchers.
In Figure 2, we show the matching matrices returned by
each individual algorithm and our aggregated result. The first
(second respectively) dimension of the matrix corresponds to
concepts in the source (destination respectively) ontology. In
Figure 3, we compared the individual and fused alignments.
Cells detected by both algorithms are reported as blue. We
are able to see how the fuzzy agreement measure captured the
agreement between the different matchers.

In Figures 4 through 9, we compare the performance of
the aggregated result with the individual matchers. The results
show the inconsistent behavior of the existing matchers in
different domains. For example, FALCON ([11]) has a very
good Precision in the “Animals” ontology (Figure 4a), whereas
in the “Pets” ontology (Figure 5a) it is a poor performer (1 and
0.5 respectively). The inconsistent behavior is also manifested
in the big difference in Recall between the “Animals” and the
“Sport Events” ontologies (0.083 and 0.893 respectively), see
Figures 4b and 6b. Another good example is the Structure
matcher, which got a Recall of 0.903 in the “Pets” ontology
and it scored just 0.007 for “Sport Event” (Figures 5b and
6b). Even FOAM ([6]), which scored high in most ontologies
(Figures 4c, 5c and 7c), scored low in the “Vehicles” and
“Tourism” ontologies (Figures 8c and 9c). No matcher is
expected to universally outright solve this problem. On the
other hand, the performance of our tool was relatively stable
throughout all domains (Figures 4 through 9). We were able to
achieve high Precision (top 2) in all domains —as expected—
because when many matchers agree on an alignment cell,
then it will most likely be valid. And for the same reason,
our tool did not score very high at the Recall factor. The
crowd sourcing model is cautious enough to wait for many
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Structure SuperHierarchy WN Our Model

Fig. 2: Visualization of the result of different matchers and our aggregated result for the Animal ontology. Note, the rows
(columns respectively) represent terms in the source ontology (destination respectively) and the red cells are values in range
[0,1] that stand for the matching result which typically tend to be close to 1.

FALCON FOAM Jaccard SMOA

Structure SuperHierarchy WN

Fig. 3: Visualization of the differences between the individual matchers in figure 2. and our aggregated result.
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Fig. 4: P, Re, and F for the Animal ontology.
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Fig. 5: P, Re, and F for the Pets ontology.
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Fig. 6: P, Re, and F for the SportEvent ontology.
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Fig. 7: P, Re, and F for the Russia ontology.
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Fig. 8: P, Re, and F for the Vehicles ontology.

0.957FALCON
0.953Our model

0.763FOAM
0.747SMOA

0.609Jaccard
0.4SuperHierarchy

0.339Structure
0.224WN

0 0.2 0.4 0.6 0.8 1

(a) Precision (P)

0.912WN
0.876SMOA

0.854FOAM
0.81Our model

0.783FALCON
0.783Structure

0.655Jaccard
0.009SuperHierarchy

0 0.2 0.4 0.6 0.8 1

(b) Recall (Re)

0.876Our model
0.861FALCON

0.807SMOA
0.806FOAM

0.631Jaccard
0.473Structure

0.359WN
0.017SuperHierarchy

0 0.2 0.4 0.6 0.8 1

(c) FMeasure (F)

Fig. 9: P, Re, and F for the Tourism ontology.



votes from the matchers before deciding whether any cell
should be considered in the output alignment or not. Given
no prior knowledge on how good the individual matchers are
and without the need for any reference ontology, our model
did provide remarkably robust results when aggregating several
matchers (top 3 with respect to Fmeasure).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel way to aggregate
ontology matchers without relying on the use of an reference
ontology. Specifically, we employed the FI with respect to a
FM of agreement to fuse different ontology matching algo-
rithms. That is, when nothing is known about the quality of
the individuals, we can look to identify agreement among the
inputs and use that measure back on the same data to guide
its aggregation. In addition, we proposed the use of population
standard deviation to measure the distance between two or
more matrices. We showed that our model can give satisfactory
and robust results in different study domains. However, few
important questions need to be addressed for future work, e.g.,
how to increase the Recall? Should more matchers be added
to increase the number of voters in the crowd? If yes, this will
considerably increase the number of free parameters in the FM
(2N − 2 for N sources) and thus increase complexity. How
to deal with the case of having a large number of matchers?
Can we use the k-additive measure? This means that we
will be listening to votes of certain number of matchers (k-
matchers). The use of k-additive measure might be considered
risky for a small k because the measure of agreement might
lose its significance. These questions and some others need
to be answered so we may better understand and improve the
performance of heterogeneous crowds.
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