A parametric hurricane wind model for intensity, size, and speed specification

By Pat Fitzpatrick and Yee Lau
Geosystems Research Institute
Mississippi State University
Parametric hurricane wind model flow chart

Step 1:
- **Input Data:**
 - Storm Center (lon, lat)
 - Max Wind Speed
 - Min Central Pressure
 - Radius at Max Wind
 - Radius at 34kt Wind
 - Storm Speed

- **Holland’s Wind Profile Algorithm**

- **Output:**
 - Scaling Parameters A & B
 - Environmental Pressure

Step 2:
- **Input Data:**
 - Grid Points
 - Storm Center (lon, lat)
 - Max Wind Speed
 - Min Central Pressure
 - Radius at Max Wind
 - Radius at 34kt Wind
 - Storm Speed
 - Storm Motion U Component
 - Storm Motion V Component
 - Environmental Pressure
 - Scaling Parameter B

- **Compute distances of each grid point from the storm center**

- **Compute tangential wind and radial wind with inflow angle based on Holland’s Wind Profile Algorithm**

- **Compute U, V and wind direction from tangential wind, radial wind, and UV components of storm motion**

- **Output:**
 - Wind Speed and Direction for each grid point
“Fitz” Holland B

The hurricane winds are based on a variant of the *Holland* (1980) wind profile:

\[p(r, B, p_{env}, p_c, R_{max}) = p_c + \left[p_{env} - p_c \right] e^{-Ar^{-a}} \]

\[V(r, B, f, p_{env}, p_c, R_{max}) = \left[\frac{AB[p_{env} - p_c]e^{-Ar^{-a}}}{\rho r^B} + \left[\frac{rf}{2} \right]^2 \right]^{0.5} - \left[\frac{rf}{2} \right] \]

\[V_{max}(B, p_{env}, p_c) = \left[\frac{B}{\rho e} \right]^{0.5} \left[p_{env} - p_c \right]^{0.5}; \quad A(R_{max}, B) = R_{max}^B \]

where \(f \) is the Coriolis parameter, \(p_c \) is the storm central pressure, \(p_{env} \) is the environmental pressure (set to 1013 mb), and \(e \) is Euler’s number (the base of the natural logarithm, approximately 2.71828). \(A \) and \(B \) are scaling parameters which control the radial wind profile. This formulation includes storm motion in \(V \). Given storm motion, \(V_{max}, R_{max}, p_{env}, \) and R34, the algorithm iterates for \(B \) and then calculates \(p_c \).

Because these equations apply above the boundary layer, but \(V_{max} \) and V34 (34-kt winds at R34) are at 10-m height within the boundary layer, \(V_{max} \) and V34 are multiplied by 1.11 before the \(B \) iteration. On average, winds are 11% faster above the boundary layer (see http://www.nhc.noaa.gov/aboutwindprofile.shtml, and Powell and Black (1990)). However, little sensitivity in the \(B \) distribution was seen with this adjustment.