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Abstract—A feature selection technique is used to enhance the
precipitation estimation from remotely sensed imagery using an
artificial neural network (PERSIANN) and cloud classification
system (CCS) method (PERSIANN-CCS) enriched by wavelet fea-
tures. The feature selection technique includes a feature similarity
selection method and a filter-based feature selection using genetic
algorithm (FFSGA). It is employed in this study to find an opti-
mal set of features where redundant and irrelevant features are
removed. The entropy index fitness function is used to evaluate the
feature subsets. The results show that using the feature selection
technique not only improves the equitable threat score by almost
7% at some threshold values for the winter season, but also it
extremely decreases the dimensionality. The bias also decreases in
both the winter (January and February) and summer (June, July,
and August) seasons.

Index Terms—Clustering, feature extraction, satellite precipita-
tion estimation (SPE), self-organizing map, unsupervised feature
selection.

1. INTRODUCTION

CCURATELY estimating precipitation at high spatial and

temporal resolutions is valuable in many applications such
as precipitation forecasting, climate modeling, flood forecast-
ing, hydrology, water resources management, and agriculture
[1]. For some applications, such as flood forecasting, accurate
precipitation estimation is essential. Even though ground-based
equipment, such as weather radars and in sifu rain gauges, pro-
vide reliable and accurate precipitation estimates, they cannot
cover all regions of the globe. In addition, their coverage is not
spatially and temporally uniform in many areas. Furthermore,
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there are not ground-based facilities to estimate rainfall over
oceans. In this regard, satellite-based observation systems can
be a solution by regularly monitoring the earth’s environment at
sufficient spatial and temporal resolutions over large areas. Sev-
eral different satellite precipitation estimation (SPE) algorithms
are already in routine use [2].

Feature selection is the process of selecting a subset of
the original feature space based on an evaluation criterion to
improve the quality of the data [3]. It reduces the dimensionality
and complexity by removing irrelevant and redundant features.
In addition, it increases the speed of the algorithm, as well as
may improve the algorithm performance such as predictive ac-
curacy. Different feature selection methods have been proposed
for supervised and unsupervised learning systems [3]-[5]. Most
of the feature selection methods are based on search procedures.
However, there are some other techniques such as the feature
similarity selection (FSS) method, developed by Mitra et al.
[6], in which no search process is required.

Search-based feature selection techniques are carried out by
subset generation, subset evaluation, stopping criterion, and
result validation [3]. Based on a search strategy, the subset gen-
eration produces the candidate feature subsets for evaluation.
Then, each candidate subset is evaluated by a certain evaluation
criterion (fitness function) and compared with the previous best
subset. If the new candidate has a better evaluation result, it
becomes the best subset. This process is repeated until a given
stopping criterion is satisfied [3].

The search-based feature selection methods can be catego-
rized into three models: filter, wrapper, and hybrid models.
Filter methods evaluate the feature subset by using the inherent
characteristic of the data. Since learning algorithms are not in-
volved in filter models, these models are computationally cheap
and fast [3], [7]. On the contrary, wrapper methods directly
use learning algorithms to evaluate the feature subsets. They
generally surpass filter methods in terms of prediction accuracy,
but, in general, they are computationally more expensive and
slower [7]. The hybrid model takes advantage of the other two
models by utilizing their different evaluation criteria in the
different search stages [3].

In a search-based feature selection, the searching process can
be complete, sequential, or random. In the case of a complete
search (no optimal feature subset is missed), finding a global
optimal feature subset is guaranteed based on the evaluation
criterion utilized [3]. However, this kind of a search process
is exhaustive or time consuming due to its complexity. In
a sequential search, not all possible feature subsets are con-
sidered. Hence, the best subset may be trapped to the local

1545-598X/$31.00 © 2012 IEEE



964 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 9, NO. 5, SEPTEMBER 2012

GOES ’ . 5 3 Feature R Feature
Calibration Segmentation - -
Images Extraction Selection
NEXRAD
Data

Temperature- ]

Rain rate
]

Training
Mode
Testing
Mode

Feature Similarity GA
Clustering Subset Generation

Assigning

T-R curve

Entropy Index

Fitness

of subset

Min:10

Max:30 ‘Optimum
subset

(b)

Fig. 1. Block diagram. (a) SPE with feature selection. (b) Feature selection.

optimal subset [3]. These include greedy search algorithms
such as sequential forward selection, sequential backward elim-
ination, and bidirectional selection [8]. This kind of searching
is fast, simple, and robust against over fitting [9]. In random
searching, randomness is used to escape local optima [3]. In
this technique, a subset is randomly selected, and then it can
either follow the classical sequential search (by shrinking or
growing the subset) or generate the next subset in a random
manner [3], [8].

II. METHODOLOGY

The precipitation estimation from remotely sensed imagery
using an artificial neural network and cloud classification sys-
tem (PERSIANN-CCS) methodology involves four major steps
[10]: 1) segmentation of satellite cloud images into cloud
patches; 2) feature extraction; 3) clustering and classification of
cloud patches; and 4) dynamic application of brightness tem-
perature (Tb) and rain-rate relationships derived, using satellite
and/or ground-based observations. In this paper, a feature se-
lection step is incorporated into the existing methodology (after
step 2, the feature extraction step) to further enhance SPE [11].
A block diagram of the SPE enhanced by feature selection is
shown in Fig. 1(a) in the training and testing modes. In the
training mode, the objective is to obtain the parameters, such
as classification weights and the temperature-rain (T-R) rate
relationship curve for each cluster.

First, the raw infrared images from the GOES-12 satellite
are calibrated into cloud-top brightness temperature images.
Using the region growing method, the images are segmented
into patches [10], [11]. The next step is feature extraction,
in which the statistics, geometry, and texture are extracted at
the cloud patch temperature thresholds of 220 K, 235 K, and
255 K. Statistic features include minimum, mean, and stan-
dard deviation of brightness temperature of each patch at the
thresholds [10]. Texture features include the wavelet features
(average of the mean and standard deviation of the wavelet
coefficients’ energy of the subbands for each cloud patch) [11],
gray-level co-occurrence matrix features, as well as the local

statistic features (such as local mean and standard deviation).
Geometry features are the area and shape index of each patch
[10]. After applying feature selection, the patches are classified
into 100 clusters using a self-organizing map (SOM) neural
network [12]. Next, a T-R rate curve is assigned to each cluster.
In order to obtain this T-R relationship, first T-R pixel pairs
(obtained from GOES-12 observations and National Weather
Service Next Generation Weather Radar (NEXRAD) Stage IV
rainfall [13]) are redistributed using the probability matching
method [10], [11], [14]. Then, the T-R redistributed samples are
fitted by a selective curve fitting method, either an exponential,
such as the one used by PERSIANN-CCS [10], or a polynomial
curve fitting recently developed [11] to cover all range of cloud
patch temperatures.

In the testing mode, the operation is similar to the training
mode in terms of segmentation, feature extraction, and fea-
ture selection. However, in the classification step, the selected
features of each patch are compared with the weights of each
cluster [12], and the most similar cluster is selected. The rain-
rate estimation of the patch is computed based on the T-R curve
of the cluster selected and the infrared pixel values of the patch.

Fig. 1(b) shows the feature selection block diagram used
in this study. A combination of FSS and filter-based feature
selection using genetic algorithm (FFSGA) feature selection
methods is used. First, some redundant features are removed
by the FSS technique [6], and then FFSGA is applied to find
the optimal feature subset.

A. FSS Technique

Developed by Mitra et al. [6], the FSS technique is ex-
ploited in this study to remove some redundant features using
a similarity feature clustering technique. In this method, the
original features are clustered into a number of homogeneous
subsets based on their similarity, and then a representative
feature from each cluster is selected. The feature clustering is
carried out by a k-nearest neighbor (k-NN) classifier and feature
similarity index, i.e., a distance measure which is defined in (1),
[6]. First, the k-NNs are computed of each feature. Then, the
feature having the most compact subset (having the minimum
distance, i.e., minimum feature similarity index, between the
feature and its farthest neighbor) is selected. A constant error
threshold (¢) is also set by the minimum distance in the first
iteration [6]. In the next step, the k neighbors of the feature are
discarded. The procedure is repeated for the remaining features
until all features are as selected or discarded. Note that, at each
iteration, the k value decreases if the kth nearest neighbors of
the remaining features are greater than e. Therefore, k may
vary over iterations. The similarity index, which is also called
maximal information compression index, is calculated as

A=0.5x <Var(:l:) + var(y)

— (ar(e) + var(y)? — dvar(@)var(y) (1 - pla. y)?)
ey
where var(x), var(y), and p(z,y) are the variance of x, vari-

ance of y, and correlation coefficient of x and y, respectively. A
is a measure of the similarity between the two variables « and
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y. If x and y are linearly dependent, \ is zero. As dependency
decreases, A increases [6].

B. FFSGA Technique

A search-based feature selection is used to find the opti-
mal feature subset. It also removes the irrelevant features and
finds the best subset that maximizes the fitness function. A
diagram of the FFSGA technique is shown in Fig. 1(b). The
FFSGA includes three steps: 1) subset generation using a GA,
2) subset evaluation based on entropy index (EI), and 3) stop-
ping criterion.

The subset generation is a search procedure which produces
candidate subsets based on a strategy. In FFSGA, a GA is
used to generate feature subsets. GAs are adaptive heuristic and
stochastic global search algorithms which mimic the process
of natural evolution and genetics. A GA algorithm searches
globally for a candidate having the maximum fitness function
by employing inheritance, mutation, selection, and crossover
processes. First, a large population (parents) of random subsets
(chromosomes) is selected. The fitness function of each subset
is computed. Then, some subsets are chosen from the popula-
tion by a probability, based on their relative fitness function.
The subsets selected are recombined and mutated to produce
the next generation. The process continues through subsequent
generations until a stopping criterion is satisfied. Using a GA,
it is expected that the average performance of each subset
in population increases when subsets having high fitness are
preserved and subsets with low fitness are eliminated [15].
In our study, the entry of each subset (chromosome) can be
between 1 and 62, with 62 being the number of all features.
The population size, which specifies how many subsets are in
every generation, is 100. The mutation rate is 0.05 (each entry
in the subset is mutated by the probability rate of 0.05 and by a
random number selected from the 1 to 62 range). The crossover
rate is 0.8 with the single point crossover method [15].

For subset evaluation, the EI, which provides the entropy
of the data set, is utilized as a fitness function to evaluate the
generated subset [16]. In order to compute the EI, the distance
and similarity between two data points, p and q (two cloud
patches), is calculated as follows:

1/2

M N
D — pJ qJ 2
w Z <maxj — min; @

Jj=1

where max; and min; are the maximum and minimum values
along the jth direction (jth component of the feature vector),
T,; and x4; are the feature values for p and q along the jth

axis, respectively, and M is the number of features in a feature
vector. The similarity between p and q is defined by

sim(p, q) = e~ *Pra 3)

where « is equal to —1In(0.5)/D, with D being the average
distance between data points. The El is calculated from [6], [16]

l l
E=-=)"Y {sim(p,q) x log (sim(p, q))

T (1 sim(p,q)) x log (1 - sim(p, @)} . (4
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Fig. 2. Estimated hourly rainfall estimates ending at 1000 UTC on Febru-
ary 12, 2008. (a) With feature selection. (b) Without feature selection.
(c) NEXRAD Stage IV.

If the data is uniformly distributed, the entropy is maximum
[6]. When the data is well-formed, the uncertainty is low and
the entropy is low [16]. It is expected that the irrelevant and
redundant features increase the entropy of the data set [16].

The feature selection process stops when the stopping criteria
are satisfied. The stopping criteria are based on a bound range
(in this work, the bound range is between 10 and 30 features
with the assumption that a range below 10 may yield missing
information and a range above 30 increases the complexity)
of the feature dimension and also based on no improvement
in the fitness function for a specific time for each feature
dimension. For each feature dimension, the optimal feature
subset is obtained, and the best subset is selected from the
optimal feature subsets with the minimum EI.
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Equitable threat score. (g) and (h) Bias.

III. VERIFICATION OF RESULTS

The study region covers 30° N to 38° N and —95° E to
—85° E of the United States. The winter (January and February)
and summer (June, July, and August) periods of 2008 are
used for testing. Note that approximately 7300 images of the

Validation results for the 2008 winter and summer seasons (daily estimate). (a) and (b) False alarm ratio. (c) and (d) Probability of detection. (e) and (f)

area of study are utilized for rainfall estimation in the testing
mode. To train the SOM and also to obtain the T-R relationship
for each cluster, we use 1000 patches (as training data), ran-
domly selected from one month before the respective testing
month.
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The IR brightness temperature observations are obtained
from the GOES-12 satellite. Produced by the National Centers
for Environmental Prediction, the NEXRAD Stage IV precip-
itation products are used for training and validation [13]. The
IR data from GOES-12 (Channel 4) has 30-min time interval
images that cover the entire area of study. It also has a nominal
spatial resolution of 4 x 4 km?. The spatial resolution for
NEXRAD Stage IV is 4 x 4 km?, and the data are available
as 1, 6, and 24 hourly accumulated precipitation values over the
United States. In this paper, the total features are 62, and by
applying the features selection technique, the selected features
are reduced to 11. Note that k (the FSS parameter) is set to 20.

Fig. 2 shows an example of the hourly precipitation esti-
mate of the two algorithms, with and without feature selection
(hereafter they are called with feature selection (WIFS)/without
feature selection (WOEFES)), at 1000 UTC on February 12, 2008
(the precipitation estimates are typically derived every 30 min;
however, for validating the results against NEXRAD Stage
IV, we accumulate them in hourly estimates). In addition, the
corresponding NEXRAD Stage IV data are shown in Fig. 2(c).
Note that this figure corresponds to the results obtained from
just one example out of the approximately 7300 images used in
this study for testing.

A set of four verification metrics are utilized to evaluate the
performance of the algorithms against the daily NEXRAD stage
IV product at rainfall thresholds of 0.01, 0.1, 1, 2, 5, 15, and
25 mm/day. These metrics are: probability of detection (POD),
false-alarm ratio (FAR), equitable threat score (ETS), and bias
[2]. The bias is the ratio of the estimated to observed rain areas.
A bias value of 1 indicates that the estimation and observation
have identical area coverage [2]. Note that the bias metric is
related to hits, false alarms, misses, and correct negatives.

The performance of WIFS and WOFS is shown in Fig. 3
for the winter and summer seasons of 2008 at different rainfall
thresholds. Fig. 3(a) and (b) shows the FAR of both algorithms
for the winter and summer. The FAR of the WIFS in the winter
is less than that of the WOFS at almost all threshold levels.
At some threshold levels in the winter, the WIFS provides
up to 10% less FAR than the WOFS. In the summer, the
two algorithms have the same performance in terms of FAR.
Fig. 3(c) and (d) shows the performance of POD for the two
algorithms (WIFS and WOFS). Except for a slight decrease in
medium rainfall thresholds in the winter, the POD of the WIFS
and WOFS are similar. Fig. 3(e) and (f) show the ETS of the
two algorithms in the winter and summer. In the winter, the
ETS of the WIFS improves at almost all rainfall thresholds,
with approximately 7% improvement occurring at medium and
high rainfall threshold levels. In the summer, the ETS of the two
algorithms are the same at all rainfall thresholds. Fig. 3(g) and
(h) shows the bias of both algorithms in the winter and summer.
Using feature selection, the bias decreases in both the winter
and summer almost at all rainfall thresholds. The bias decreases
more in medium and high rainfall thresholds. In the winter, the
bias decreases in a range of 0.1 to 0.4, and in the summer, it
decreases from 0.1 to 0.2 mm/day.

It is worthy to mention that the ETS improvement in the
winter can be related to the type of cloud covers. Different
cloud types occur in the summer and winter seasons. From

the results presented, it can be inferred that some features
provide irrelevant rain-rate information from some cloud types
occurring in the winter. These features are more likely being
removed by the feature selection technique. As a result, the ETS
improves in the winter.

IV. CONCLUSION

A feature selection technique is applied to the PERSTANN-
CCS enriched with wavelet features to enhance rainfall precip-
itation estimation. The feature selection technique includes a
FSS method and a FFSGA. The EI fitness function is exploited
as the feature subset evaluator. The results show that, in the
winter season, the WIFS algorithm provides approximately 7%
ETS improvement at medium and high rainfall threshold levels
compared to the WOFS algorithm. It also decreases the bias in
the winter and summer seasons. Furthermore, it greatly reduces
the dimensionality from 62 to 11.
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