Shelf Hypoxia and the U.S. IOOS Coastal Modeling Testbed

JOHN M. HARDING1, KATJA FENNEL2, ROB HETLAND3 & JERRY WIGGERT4

1. Northern Gulf Institute, jharding@ngi.msstate.edu
2. Dalhousie University
3. Texas A&M University
4. University of Southern Mississippi

U.S. IOOS Coastal Ocean Modeling Testbed

- 5 teams, 64 scientists/analysts
- SURA is overall lead
- One year project (May 2010-11)
- NCE to Dec 2011
- Multi-sector engagement
 - federal, academia, industry
- Goals:
 - Less about models than process
 - Enable modeling and analysis
 - Stable infrastructure focus
 - tools
 - standard observations
 - transition to operations (R2O)

Collaboration & Data

- 4-Year, Multi-Source, Quality Controlled Hypoxia Data to Testbed & NOAA NODC
- Retrospective Navy Ocean Prediction Output
 - Now Available on NGI Developmental and NOAA NODC NCDDC Production Servers

Collaboration & Models

- Nesting Impact on Physical Properties
 - Testbed, NOAA CSDL, NRL
 - ROMS Salinity Skill Scores
 - (Nested in Gulf Models):
 - HYCOM 0.54
 - IASNSFS (NCOM) 0.56
 - IASNSFS 6h 0.55
 - NGOM (POE) 0.51
 - NGOM 3h 0.52
 - CLIM (unnested) 0.38

- Nesting Impact on Biogeochemistry
 - Testbed, NOAA CSDL, EPA, NRL
 - Impact of Nesting on Hypoxic Area less obvious

AMSEAS Operational Evaluation

- Testbed, NAVO, NOAA CSDL

Roles of PIs

- John Harding, NGI
- Rob Hetland, TAMU
- Katja Fennel, Dalhousie
- Jerry Wiggert, USM
- John Lebrer, EPM AEHLRL
- Alan Lewitus, NOAA CSIOR
- Bruce Lippard, U Delaware
- Chris Mooers, Portland State
- Steve Morrey, FSU
- Rich Patchen, NOAA CSIOR
- Eugene Wai, NOAA CSIOR
- Jiangtao Xu, NOAA CSIOR

Motivation

Why Gulf of Mexico Shelf Hypoxia?

- Multi-Agency [federal & State] Mississippi River/Gulf of Mexico Watershed Nutrient Task Force action step
 - "Continue to reduce uncertainty about the relationship between nitrogen and phosphorous loads and the formation, extent, duration, and severity of the hypoxic zone; to best monitor progress toward, and inform adaptive management of the Coastal Zone.“
 - (http://www.epa.gov/mba/sboin/actionsteps.html)

- A near real-time eddy-resolving shelf-hypoxia forecast capability will allow the capture of the true temporal variability of hypoxia formation, extent, duration and severity of the Gulf of Mexico Dead Zone.

Shelf Hypoxia Testbed Approach

- **Collaboration**
 - R2R
 - R2O (Transition)

- **Data**
 - In Situ
 - Forecast System

- **Models**
 - Development
 - Evaluation

Planned NOAA Operational Shelf Forecast System

Shelf Hypoxia Initial Focus (1-2 yr)

- Challenge the CI Team to Enhance Academic/Operational Collaboration & Transition
 - Evaluate regional model boundary conditions on current coastal/hypoxia modeling in the northern GoM
 - Compare NOAA and EPA Approaches to Gulf hypoxia
 - Transition related regional circulation component of this initial system as a baseline operational capability
 - Enable transition of NGI/NCDDC Developmental OceanNOMADs (P11 NCDDC External Milestone)

Project Partners

- Martinine Marta Almeida, TAMU
- Frank Bub, NAVO/NOAA
- Scott Cross, NOAA NCDDC
- Pat Fitzpatrick, MSU
- Courtney Harris, VMMS
- Matt Howard, GCDS
- Jianhua Hu, Dalhousie
- Dong Shen, POE
- Arnaud Laurent, Dalhousie
- John Lebrer, EPM AEHLRL
- Alan Lewitus, NOAA CSIOR
- Bruce Lippard, U Delaware
- Chris Mooers, Portland State
- Steve Morrey, FSU
- Rich Patchen, NOAA CSIOR
- Eugene Wai, NOAA CSIOR
- Jiangtao Xu, NOAA CSIOR

Technical Report @

http://testbed.sura.org