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Abstract- a methodology to enhance a satellite infrared –

based high resolution rainfall retrieval algorithm is 

developed by intelligently selecting features based on a filter 

model. Our methodology for satellite-based rainfall 

estimation is similar to the PERSIANN-CCS approach. 

However, our algorithms are enriched by applying a filter- 

based feature selection using generic algorithm.  The 

objective of using feature selection is to find the optimal set 

of features by removing the redundant and irrelevant 

features. Since we use unsupervised cloud classification 

technique, Self Organizing Map (SOM), an unsupervised 

feature selection method, is used. In our approach, first the 

redundant features are removed by using a feature 

similarity-based filter and then using Entropy Index along 

with genetic algorithm searching, the irrelevant features are 

eliminated. The result shows that using feature selection 

process can improve Rain/No Rain detection about 10 % at 

some threshold values and also decreases the RMSE about 

2mm. 

Keywords: Satellite precipitation estimation, feature 

extraction, unsupervised feature selection, clustering  

 

1.   INTRODUCTION 

 
Precipitation estimation at high spatial and temporal resolutions 

is beneficial for research and applications in the areas of 

weather, precipitation forecasting, flood and flash flood 

forecasting, climate, hydrology, water resources management, 

soil moisture, evaporation, and agriculture (Anagnostou, 2004). 

Notwithstanding ground-based precipitation estimates facilitate 

routine monitoring of rainfall across much of the continental 

areas of the world. The ground-based observation systems are 

not uniformly covered in terms of spatial and temporal 

resolutions. For instance, radar coverage is sparse across 

mountain ranges and tropical rain forests. In addition, ground-

based estimates cannot provide the precipitation estimates over 

the oceans. Alternatively, satellite-based observation systems 

can provide the routine monitoring of the earth’s environment 

such as precipitation estimation at sufficient spatial and 

temporal resolutions. 

 

Many different satellite precipitation estimation (SPE) 

algorithms have been developed. These algorithms are mainly 

classified based upon the sensors and platforms they employ. 

Active and passive radars, visible (VIS), infrared imagery (IR), 

in-situ measurements, and estimates from ground-based radars 

have been incorporated into these algorithms; however, each of 

these measurements have intrinsic limitations.  Active and 

passive microwave sensors on satellites can provide physical 

information about clouds, but their temporal resolution is not 

appropriate for high temporal applications. Infrared sensors 

onboard geostationary (GEO) platforms can provide high 

temporal observation, but their cloud top information is not 

always physically related to the microphysical properties of 

precipitation (Anagnostou, 2004). Studies show that using 

infrared data with radar or passive microwave calibration can 

provide more accurate estimations at high temporal resolution 

(Huffman, 2007; Turk, 2005; Joyce, 2004). The preferred 

Popular High Resolution Satellite Precipitation (HSPE) 

algorithms include 1) the Precipitation Estimation from 

Remotely Sensed Imagery algorithm using an Artificial Neural 

Network (PERSIANN) (Hsu, 1997; Sorooshian, 2000) and 

PERSIANN-CCS (Hong, 2004),  2) the CPC morphing 

technique (CMORPH) algorithm developed by the National 

Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center (CPC) (Joyce, 2004), 3) TMPA (Tropical 

Rainfall Monitoring Mission (TRMM) Multisatellite 

Precipitation Analysis) (Huffman, 2007),  and 4) the Naval 

Research Laboratory (NRL) blended technique (Turk, 2005) 

algorithm.  

 

The algorithm and approach used in the current study are 

similar to those employed by the PERSIANN-CCS and the 

previous work of Mahrooghy et al. (2010) , which use patch 

cloud classification to measure the precipitation, except the 

current study enhances precipitation estimation using  the 

feature selection method. Feature selection is a process that 

selects an optimal subset of original features based on an 

evaluation criterion. It reduces the feature dimension by 

removing irrelevant and redundant information. This improves 

the accuracy and increases the speed of data processing (Liu, 

2005). Feature selection has been studied in supervised (Liu, 

2009) and unsupervised classification (Dash, 2000; Mitra, 

2002). 

 

2. DATA 

 
The study region covers an area of the United States extending 

between 30N to 38N and -95E to - 85E during January and 

February 2008.  The training data is obtained one month before 

the respective testing month. The IR brightness temperature 

observations are obtained from the GOES-12 satellite. The 

National Weather Service Next Generation Weather Radar 

(NEXRAD) Stage IV precipitation products are used for 

training and validation. Also, we use the PERSIANN-CCS 

precipitation estimates (obtained from the PERSIANN group) 

for comparing the results.  The IR data from GOES-12 

(Channel 4) has 30-minute interval images that cover the entire 

area of study.  

 

3. METHODOLOGY 

 

Figure 1 shows a diagram of the high resolution satellite 

precipitation estimation using cloud classification in the 

training and testing modes.  In the training mode, the objective 

is to attain the parameters, such as classification weights and 

the temperature-rain rate relationship curve of each cluster. 
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First, the raw infrared images from GOES-12 are calibrated into 

cloud-top brightness temperature images. The images are 

segmented into patches using the region growing method. 

Figure 2a (top) shows the cloud-top brightness temperatures 

from the GOES-12 on February 4, 2008 at 0615 UTC; and the 

corresponding cloud patches segmented is depicted in Figure 

2b.  

 

 

 
 

Figure 1. High resolution satellite precipitation estimation 

block diagram 

 

 
                                      (a) 

 

             
                                     (b) 

 

Figure 2. GOES-12 cloud-top brightness temperatures (a-top); 

and corresponding segmented patches of clouds (b-bottom) 

 

 

The next step is feature extraction, in which the radiometric 

statistics (also referred to as the coldness features), geometry, 

and texture are extracted at the cloud patch temperature 

thresholds 220 K, 235 K, and 260 K. Coldness features include 

min and mean patch temperature at the thresholds. Texture 

features are the wavelet and occurrences matrix as well as the 

local statistic features (such as local mean and standard 

deviation). Geometry features are the area and shape index of 

each patch (Hong, 2004; Mahrooghy, 2010). Afterward, 

applying the feature selection to the features, the patches are 

classified into 100 clusters using a Self-Organizing Map  

(SOM) neural network. SOM projects patterns from the high 

dimensional space to a lower dimensional space. The projection 

enables the input patterns of many variables to be classified into 

a number of clusters and to be arranged in a two-dimensional 

coordinate. After clustering, a Temperature–Rain Rate (T-R) 

curve is assigned to each cluster. In order to obtain this T-R 

relationship, first T-R pixel pairs (obtained from GOES-12 

observations and NEXRAD Stage IV rainfall) are redistributed 

by using the probability matching method (PMM) (Hong, 

2004). The T-R transformation that is obtained from applying 

PMM are fitted by a polynomial curve fitting method 

(Mahrooghy, 2010).  

 

In the testing mode, the operation is the same as in the training 

mode in terms of segmentation, feature selection, and feature 

reduction. However, in classification, the features of each patch 

are compared with the weights of each cluster and the most 

similar cluster is selected. The rain-rate estimation of the patch 

is computed based on the T-R curve of the cluster selected and 

the infrared pixel values of the patch. 
 

3.1 Feature Selection 
Most of the feature selection techniques employ a search 

procedure in order to generate a subset of features. However, 

there are some techniques that do not use search procedures 

(Mitra, 2002). A usual feature selection process with search 

criteria includes four steps: 1) subset generation, 2) subset 

evaluation ,3) stopping criterion, and 4) result validation (Liu, 

2005). Figure 3 shows a block diagram of the process. The 

subset generation is a search procedure which produces 

candidate subsets based on a strategy. The searching process 

can be complete, sequential, or random. In the complete search, 

an exhaustive search is performed in order to find the optimal 

feature subset. In this type of search, it is guaranteed that the 

optimal feature subset is selected. The problem of this search is 

the complexity and long processing time. In the sequential 

search, not all possible feature subsets are considered and the 

optimal subset may be lost. The greedy search algorithms such 

as sequential forward selection, sequential backward 

elimination, and bidirectional selection are among the 

sequential searches. This kind of searching is fast, simple, and 

robust against over fitting. The random searching starts with a 

random selected subset and it then proceeds with a sequential 

search (Liu, 2005). 

 

 
Figure 3. Block diagram of the search based feature selection 

 

 

Subset evaluation is an important step in the feature selection 

techniques. There are two groups of evaluation criteria: 

independent criteria and dependent criteria. Independent criteria 

are usually used in filter-based feature selection. In fact, this 

criterion evaluates the characteristics of the training data 

without considering the classifier. These independent criteria 

can be distance,  information, dependency, or consistency 



measures. Dependent criteria are used in the wrapper feature 

selection models in which classifiers are taken into account to 

find the goodness of a feature subset. These criteria mostly use 

predictive accuracy as their primary measure. The stopping 

criteria decide when the algorithm of feature selection should 

stop. A programmed stop can be triggered by completing a 

search, achieving a sufficient subset, having no further addition 

or removal of features, or  reaching a pre-specified boundary. 

Finally, if we have prior knowledge of the relevance or 

irrelevance of features, we can validate the results of the feature 

selection algorithm. In many cases, the prior knowledge of the 

relevance/irrelevance of features is not accessible. 

 

3.2 Wrapper, Filter, and Hybrid-based feature selection 

The existing feature subset algorithms can be sorted into three 

categories: 1) filter algorithms, 2) wrapper algorithm, or 3) 

Hybrid algorithms. In filter-based algorithms, one of the search 

strategies is selected (complete, sequential, or random search 

algorithm) and then the feature subset is evaluated by an 

independent measure.  In wrapper algorithms, a classifier is 

exploited to evaluate the goodness of the current subset. Due to 

using a classifier to find an optimal feature subset, the wrapper 

performance is better than that of the filter-based at the cost of 

high computational expense. A hybrid algorithm uses the 

advantages of both filter and wrapper algorithms (Liu, 2005). 

  
3.3 Genetic Algorithm (GA) 

Genetic Algorithms are adaptive heuristic search algorithms 

based on the evolutionary ideas of natural selection and 

genetics. Similar to a natural system, the GA algorithm is 

designed to employ inheritance, mutation, selection, and 

crossover processes to find a candidate having the maximum 

fitness. GA is involved in selecting parents for reproduction, 

applying crossovers between the parents, and performing 

mutation operations on the bits representing the children. The 

GA randomly generates the initial population of limited size 

candidates and applies a selection process in which the 

members of the population having high fitness function survive 

while those having the least are eliminated (Goldberg, 1989). 

 

3.4 Unsupervised Feature Evaluation Indices 

There are different evaluation indices used in unsupervised 

feature selection such as Class Separability Index, Entropy 

Index, and Fuzzy Feature Evaluation Index (Mitra, 2002). The 

Entropy Index (E) can be obtained by computing the distance 

and similarity between two data points, p and q, as follows:  
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where maxj  and  minj are the maximum and minimum values 

along the jth direction. Xpj and Xqj  are feature values for p and q 

along the jth axis, respectively, and M is the number of features.  

The similarity between p and q is given by 
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where α is equal to D/5.0ln−   with D being the average 

distance between data points. The entropy index is calculated 

by the following equation: 
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If the data is uniformly distributed the entropy is maximum. 

When the data is well-formed the uncertainty is low and the 

entropy is low ( Dash, 2000). 

 
3.5 Feature selection using clustering  
The feature selection technique explained above uses a 

searching procedure to generate subset candidates. There are 

some other methods that are not using search operations such as 

feature selection using clustering. These techniques are 

generally used for removing redundant features (Mitra, 2002).  

These methods involve partitioning of the original feature set 

into clusters such that the features inside a cluster are highly 

similar while those in different clusters are disparate. Mitra et al 

(2002) developed an algorithm based on clustering and feature 

similarity to remove redundant features. In this algorithm, k 

nearest neighbors of each feature are computed, among them,  

the feature having the most compact subset is selected (the error 

threshold (ε) is also set to the distance of the kth nearest 

neighbor of the feature selected) and then its k neighbors are 

discarded. The algorithm is repeated until all features are 

considered. The value k may decrease over iterations if the kth 

nearest neighbors of the remaining features are greater than ε. 

In this algorithm, a similarity measure called Maximal 

Information Compression Index is used for clustering (Mitra, 

2002). This similarity index is calculated as  
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λ is symmetric, invariant to transform and rotate, and also 

sensitive to scaling of the variables. The λ value is zero when 

the features are linearly dependent and increases as the 

dependency decreases (Mitra, 2002). 

 

4. RESULTS AND VALIDATION 

 

Figure 4 shows the feature selection block diagram used in this 

study. Employing feature similarity clustering (redundant filter) 

based on Maximum Information Compression index (Mitra, 

2002), K  (= 10) redundant features are removed.  

        

    

 
 

Figure 4. Feature selection used for the HSPE algorithm 

 

The irrelevant features are also eliminated by utilizing a filter- 

based feature selection (irrelevant filter). The filter-based 

feature selection uses GA as subset generator and entropy as 

evaluation criteria. The optimal feature subset is obtained from 

the dimension between 20 and 30.  

 

A set of 4 verification metrics, commonly used in the 

precipitation verification community (Ebert, 2007), are used to 

compare the performance of the two different algorithms, 



‘feature selection’ and ‘no feature selection’. Also the results 

are compared to the PERSIANN-CCS (simply referred to as 

CCS) product obtained from the PERSIANN group. The 

quantitative accuracy of the estimates is evaluated by using the 

Root Mean Squared Error (RMSE). The performance of 

rain/no-rain detection is evaluated by the Probability of 

Detection (POD), the False-Alarm Ratio (FAR), and the Heidke 

Skill Score (HSS). 

 

The daily estimates from January and February 2008 are 

computed for both algorithms. The results of the evaluation 

metrics are depicted in Figure 5. As seen from this figure, 

feature selection can improve the FAR, especially at higher 

thresholds in which the HSS is improved about 10%. Generally 

speaking, using feature selection mends the HSS at all 

thresholds, if compared to the ‘no feature selection’ algorithm. 

In addition, using feature selection also decreases the RMSE by 

approximately 2 mm.  

 

 
 

Figure 5. Validation results for Jan to Feb (winter) 2008 (daily 

estimate): (a) False Alarm Ratio; (b) Probability Of Detection; 

(c) Heidke Skill Score; (d) Root Mean Squared Error 

 

5. CONCLUSION 

 

A high resolution precipitation estimation algorithm based on 

cloud patch classification is developed using a feature selection 

method in which the redundant and irrelevant features are 

removed. The feature similarity clustering method using the 

Maximum Information Compression Index is used in order to 

eliminate the redundant features. In addition, a filter-based 

feature selection is utilized to find the optimal feature subset. 

The result shows that using feature selection improves the 

rain/no rain detection by about 10 % at some thresholds. It also 

decreases the RMSE by approximately 2 mm for all thresholds.  
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