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Many large-scale management programs directed toward the control of waterhyacinth rely on maintenance

management with herbicides. Improving the implementation of these programs could be achieved through

accurately detecting herbicide injury in order to evaluate efficacy. Mesocosm studies were conducted in the fall and

summer of 2006 and 2007 at the R. R. Foil Plant Science Research Center, Mississippi State University, to detect

and predict herbicide injury on waterhyacinth treated with four different rates of imazapyr and glyphosate.

Herbicide rates corresponded to maximum recommended rates of 0.6 and 3.4 kg ae ha21 (0.5 and 3 lb ac21) for

imazapyr and glyphosate, respectively, and three rates lower than recommended maximum. Injury was visually

estimated using a phytotoxicity rating scale, and reflectance measurements were collected using a handheld

hyperspectral sensor. Reflectance measurements were then transformed into a Landsat 5 Thematic Mapper (TM)

simulated data set to obtain pixel values for each spectral band. Statistical analyses were performed to determine if a

correlation existed between bands 1, 2, 3, 4, 5, and 7 and phytotoxicity ratings. Simulated data from Landsat 5 TM

indicated that band 4 was the most useful band to detect and predict herbicide injury of waterhyacinth by glyphosate

and imazapyr. The relationship was negative because pixel values of band 4 decreased when herbicide injury

increased. At 2 wk after treatment, the relationship between band 4 and phytotoxicity was best (r2 of 0.75 and 0.90

for glyphosate and imazapyr, respectively), which served to predict herbicide injury in the following weeks.

Nomenclature: Glyphosate; imazapyr; waterhyacinth, Eichhornia crassipes (Mart.) Solms EICCR.

Key words: Landsat 5 TM, reflectance, spectral bands, phytotoxicity, invasive plant, aquatic plant management.

Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an
exotic, monocotyledonous, free-floating aquatic plant that
belongs to the Pontederiaceae family (Godfrey and Wooten
1979). The native range of waterhyacinth extends to
tropical and subtropical regions of South America, and it
was introduced into the United States in 1884 (Wunder-
lich 1962). Reproduction of waterhyacinth is predomi-
nantly vegetative, by which it effectively doubles the
number of plants every 12.5 d (Penfound and Earle 1948)
and increases dry biomass at a rate of 1.2% d21 (Center
and Spencer 1981). The floating plant mats produced by
this rapid growth rate and the species’ relation to
worldwide economic losses and environmental impacts

have led to waterhyacinth being considered one of the
‘‘world’s worst weeds’’ (Holm et al. 1991). For instance,
the presence of waterhyacinth in a water body limits water
use for recreation and hydroelectric power generation and
reduces phytoplankton production and oxygen mixing in
the water column (Honnell et al. 1993; McVea and Boyd
1975; Toft et al. 2003).

Management of waterhyacinth is usually dependent on
the use of herbicides such as diquat (Langeland et al. 2002),
glyphosate (Van et al. 1986), and 2,4-D (Joyce and Haller
1984) to control its biomass and prevent its spread. Diquat
rapidly reduces plant tissue within 3 d, controlling more
than 85% of the plant stand (Langeland et al. 2002).
Likewise, glyphosate and 2,4-D are reported to reduce
populations of waterhyacinth to ‘‘non problematic levels’’
achieving more than 85% control in 14 d or less (Joyce and
Haller 1984; Van et al. 1986). Imazapyr has also been
suggested to have efficacy on waterhyacinth; however, no
studies have been published to date.

Upon exposure to herbicides, target plants typically have
phytotoxicity symptoms. Phytotoxicity is the symptomol-
ogy (e.g., chlorosis) that susceptible plant species exhibit in
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response to herbicide injury that can be quantified using
rating scales to measure the efficacy of a particular
herbicide (Willard 1958). Rating scales are subjective
(Willard 1958); they are based on visual estimations of
herbicide injury and may vary between observers. However,
these scales provide numerical data necessary to statistically
evaluate the efficacy of the herbicide used.

With large-scale applications, monitoring programs rely
on the evaluation of herbicide efficacy by a subjective spot
assessment of efficacy (Madsen and Bloomfield 1993).
Limitations of such an evaluation are that it is very labor
intensive, especially in areas with limited accessibility
(Jakubauskas et al. 2002), and that it is often subjective or
biased according to the observer performing the survey
(Madsen and Bloomfield 1993). These problems may be
overcome with the use of remote sensing because it analyzes
changes across a geographic area instead of at single points,
while maintaining an unbiased response of herbicide effects
from plants (Jakubauskas et al. 2002).

Most of the available sensors used in remote sensing
applications (e.g., Landsat 5 Thematic Mapper [TM])
construct images based on the visible (400 to 700 nm) as
well as near- and mid-infrared (700 to 900, 1,550 to 1,750,
and 2,000 to 2,350 nm) spectral regions (Jensen 2000).
Energy in these spectral regions, or bands, is either
absorbed or reflected by vegetation. These absorption or
reflectance data can be used in many weed management
applications. For instance, changes in red and near-infrared
reflectance are reported to be useful in the detection of
plant stressors such as injury due chemical and biological
control as well as water and nitrogen deficiency (Adcock et
al. 1990; Carter 1991, 1993; Everitt et al. 2005; Filella and
Peñuelas 1994; Henry et al. 2004; Thelen et al. 2004).

Primarily, energy in the red (650 to 700 nm) and mid-
infrared (1,300 to 3,000 nm) regions is absorbed by
chlorophyll molecules and water in plants, respectively
(Carter 1993; Ustin et al. 2009,). Alternatively, light
energy is reflected by internal leaf structures (e.g., spongy
mesophyll cells) in the green (500 to 550 nm) and near-
infrared (700 to 1,300 nm) regions (Gates et al. 1965;
Gausman 1974; Jensen 2000). Another spectral region that
responds to plant stress is the red edge (695 to 725 nm)
which changes spectrally due to plant pigment content
(Carter and Knapp 2001; Ustin et al. 2009), such as
chlorophyll (Boochs et al. 1990; Filella and Peñuelas
1994). In fact, the red edge peak of 703 nm shifts toward
shorter wavelengths when plants are under stress of
nitrogen and water deficiencies (Boochs et al. 1990; Filella
and Peñuelas 1994).

Because herbicides have the capacity to alter the
physiological function of the plant (e.g., loss of plant
pigments), it is expected that the spectral characteristics will
also be altered. This relationship has been studied in
terrestrial plants where temporal herbicide injury has been
compared with changes of energy reflectance (Adcock et al.
1990). Conversely, in aquatic plant species, most studies
have focused on species differentiation using reflectance
and biological control stressors (Best et al. 1981; Everitt et
al. 2002, 2005) without considering spectral responses to
stressors such as herbicide injury. In addition, studies of
aquatic plants lack temporal data (Everitt et al. 2002) and
have only assessed plant stress at the leaf level (Carter 1991)
instead of the canopy level. Measuring the spectral response
at the canopy level is important when working with aquatic
species because of the direct influence of the ratio of
vegetation cover to water background (Best et al. 1981;
Lehmann and Lachavanne 1997; Peñuelas et al. 1993) and
its relation to changes in canopy complexity over the
growing season (Madsen 1993). Therefore, it is important
to fully understand how the spectral response changes over
time when aquatic plants are exposed to herbicides.

In this experiment, simulated spectral data from Landsat
5 TM were used to investigate herbicide injury through
time and document the control of waterhyacinth. The TM
sensor was selected because it has provided continuous
imagery of the earth’s surface since 1982, producing
multispectral imagery in seven spectral bands including the
visible and infrared regions (Table 1). Moreover, its
spectral resolution coincides with currently operable
sensors such as Landsat 7 Enhanced Thematic Mapper
(ETM+) and the Surrey Linear Imager (SLIM6). The study
was not intended to simulate either temporal or spatial
resolution from Landsat 5 TM.

The objectives of this study were to (1) investigate the
relationship between spectral bands 1, 2, 3, 4, 5, and 7
from the Landsat 5 TM sensor and visual phytotoxicity
ratings of waterhyacinth treated with glyphosate and

Interpretative Summary
Waterhyacinth is an aquatic weed that causes ecological and

economic losses worldwide. The management of waterhyacinth
relies on use of herbicide applied to the foliage. This study
explored the potential of using satellite Landsat 5 Thematic
Mapper data to detect and predict herbicide injury on
waterhyacinth affected by two herbicides: glyphosate and
imazapyr. Among the spectral bands studied, only the near-
infrared band was useful to detect and predict herbicide injury.
The detection of herbicide injury was comparable to visual injury
ratings. The prediction of herbicide injury was possible at 3, 4, 5,
and 6 wk after treatment. The main limitation appeared to be
when plants showed very little injury and could not be
distinguished from plants that had not been exposed to the
herbicides.

Although this study only simulates sensor data from Landsat 5
TM, results suggest that aquatic plant managers may be able to use
remote sensing within a 2-wk period after applications of
glyphosate or imazapyr to assess effectiveness of the treatment.
This method needs to be validated with field data as part of an
operational waterhyacinth management program.
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imazapyr and (2) using the best spectral band, develop a
model to predict herbicide injury on waterhyacinth treated
with glyphosate or imazapyr. The goal of this research was
to determine if remote sensing can be used to monitor
herbicide injury and predict ultimate mortality of water-
hyacinth treated with slow-acting herbicides such as
imazapyr and glyphosate. Hence, further recommendations
may be developed for large-scale herbicide assessments to
minimize survey time.

Materials and Methods

Field Experiment. An outdoor mesocosm study was
conducted during the fall of 2006 and repeated the
following year in the summer of 2007 at the R. R. Foil
Plant Science Research Center, Mississippi State Univer-
sity, Starkville, MS (33u289300N, 88u460250, elevation
104 m [341 ft]). The study was conducted in 378-L (100-
gal) tanks that were 63 cm deep, 132 cm long, and 78 cm
wide. Water volume was maintained at 300 L in each tank
and aeration was supplied using a regenerative air blower to
promote water circulation. Tanks were arranged in a
completely randomized design to evaluate eight herbicide
treatments plus an untreated reference. Each treatment was
repeated in four tanks. Waterhyacinth was grown in each
tank until plants covered the water surface, which took
approximately 4 wk. Water was amended with fertilizer1 at
a rate of 60 mg L21 (0.008 oz gal 21) every 3 wk to prevent
nutrient deficiency.

Herbicides evaluated were the isopropylamine salt of
imazapyr2 and the isopropylamine salt of glyphosate.3

Imazapyr was applied at rates of 0.6, 0.3, 0.15, and
0.07 kg ae ha21 (0.26, 0.13, 0.06lb ac21) whereas, glypho-
sate was applied at 3.4, 1.7, 0.8, and 0.4 kg ae ha21(1.51, 0.71,
0.35 lb ac21). Rates corresponded to the maximum
recommended label rate (3) and three reduced herbicide
rates (0.503, 0.253, and 0.1253). A nonionic surfactant4

was added (glyphosate 0.50% v/v, imazapyr 0.25% v/v) to
each spray mixture as recommended by the herbicide label.

Treatments were applied using a CO2-pressurized backpack
sprayer and a single-nozzle boom. The spray apparatus was
calibrated to deliver 187 L ha21 over the plant canopy at a
constant speed and pressure of 3.2 km h21 and 276 kPa
respectively. An even flat fan nozzle5 was used to obtain plant
coverage during herbicide application. A protective barrier was
placed around each tank during herbicide application to
prevent drift and off-target injury.

Data Collection. Herbicide injury was evaluated weekly by
one observer using a phytotoxicity rating scale for 6 wk
after treatment (WAT; Nelson et al. 2001; Table 2). The
scale rates visible injury from 1 (no visible injury) to 9
(destruction of the plant). Information at each category or
rank in the scale details and describes common visual
symptoms exhibited by injured plants such as chlorosis and
necrosis in combination with an estimated percentage of
plant tissue affected. The performance of the phytotoxicity
rating scale was assessed using percentage of control visual
ratings and chlorophyll concentration. Percentage of
control was determined in 10% increments where 0% 5
no control and 100% 5 complete plant death; chlorophyll
concentration was estimated from the first true leaf of a
random plant in each treatment using a handheld
chlorophyll meter6 every week (Spencer et al. 2007).

Hyperspectral reflectance data were obtained weekly
from each treatment using a handheld spectroradiometer.7

This device measures reflectance in 2,151 spectral bands
between 350 and 2,500 nm with a 1.4-nm bandwidth at a
field of view of 25u. A total of 25 hyperspectral signatures
were collected randomly from each treatment using the

Table 1. Spectral band ranges and their respect spatial resolution
or pixel size used by the Thematic Mapper sensor onboard
Landsat 5.

Band number
Spectral

resolution (nm)
Spatial

resolution (m)

1 (blue) 450–520 30
2 (green) 520–600 30
3 (red) 630–690 30
4 (near-infrared) 760–900 30
5 (midinfrared) 1,550–1,750 30
6 (thermal) 10,400–12,500 120
7 (midinfrared) 2,080–2,350 30

Table 2. Phytotoxicity rating scale used to assess herbicide injury
in waterhyacinth. Adapted from Nelson et al. (2001).

Rating Description

1 No visible effect; green, healthy tissues; no herbicide
damage; identical to check (control)

2 Very mild symptoms; slight color change (mild yellowing
or browning); plants will recover

3 Mild symptoms; off-color plant tissues; more severe
discoloration than no. 2 rating

4 Clear symptoms; probably won’t result in plant death
5 Clear symptoms; possible permanent damage to plant

tissues; will result in decrease biomass
6 Distinct damage on 25% of plant tissues (but less than

50%)
7 Severe damage on 50% of plant tissues (but less than

75%)
8 Very severe damage; 75% of tissues affected (but less than

100%)
9 Necrotic, collapsing tissues; damage on 100% of plants;

total destruction of plant stand
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bare fiber of the sensor. The sensor was held at nadir
(0.3 m) over the plant canopy throughout data collection
to obtain signatures from an area of 137 cm2 for each
signature. Data were collected at noon (6 1 h) on cloudless
days using sunlight as the energy source. Hyperspectral
signatures from plants that collapsed to the bottom of the
tank due to herbicide effects were recorded as zero or no
spectral response. Previous studies have used this type of
spectroradiometer to obtain ground-truth spectral data
from herbicide-injured plants (Henry et al. 2004) and
simulated reflectance data from multispectral sensors such
as Landsat 7 ETM+, Terra Moderate Resolution Imaging
Spectroradiometer (MODIS), and NOAA-14 Advance
Very High Resolution Radiometer (AVHRR) (Miura et
al. 2002).

Landsat 5 TM Data Simulation. All hyperspectral
signatures for each treatment across all weeks were
transformed to simulate a Landsat 5 TM multispectral
data set. The spectroradiometer used measures of reflec-
tance within the same spectral resolution as bands 1, 2, 3,
4, 5, and 7 of Landsat 5 TM (Table 1). The transformation
was performed using a mathematical code developed in
MatLab software8 that applies a spectral filter to the
hyperspectral signatures reducing the total number of
bands to the desired bands1, 2, 3, 4, 5, and 7 of Landsat 5
TM. A transformation matrix was constructed in MatLab
with each column containing weights of the spectral filters
in an orthogonal manner to create the relative spectral
response for each spectral band (NASA 2008). Band 6,
which is considered the thermal band, was not extracted
because its spectral range is not measured by the spectro-
radiometer used in this study (350 to 2,500 nm). The
resultant simulated data set contained pixel values for each
band on a scale of 0 to 255, because Landsat 5 TM has a
radiometric resolution of 8 bits (28 5 256, range 5 0 to
255).

Data Analysis. All statistical analyses were performed using
SAS v. 9.1 software9 using a significance level of 0.05. The
performance of the phytotoxicity scale was evaluated
against percent age of control ratings and chlorophyll
measurements using a correlation procedure (PROC
CORR).

Spectral band and phytotoxicity data were pooled across
seasons according to each response variable measured. The
reason for pooling the data was to have a data set that
represents the growing season of waterhyacinth and a time
span of when plant control techniques are implemented.
Each band was correlated (PROC CORR) to phytotoxicity
ratings to determine which spectral band was the best to
monitor herbicide injury according to a significant yielded
Spearman’s correlation coefficient (r) obtained. The best
spectral band was then subjected to linear and polynomial
regression analysis using PROC GLM at each WAT.

Regression models were sequentially fit beginning with a
linear model. Polynomial terms were then added one at a
time and lack of fit determined using partial t-tests. Only
the highest and consistent coefficients of determination (r2)
and their corresponding regression equations were used in
the prediction of herbicide phytotoxicity for each herbicide.
Predicted and observed phytotoxicity values were regressed
to evaluate their relationship. The best spectral band and
phytotoxicity values were also analyzed using a one-way
analysis of variance where significant difference between
treatment means at 1, 3, and 6 WAT over each season were
determined using a Fisher’s Protected LSD test. This
analysis led to differentiation between noninjured and
injured plants at early, middle, and late injury stages
following herbicide applications. These times were also
chosen because they corresponded to the temporal
resolution of Landsat 5 TM, which is 16 d.

Results

Estimated chlorophyll concentration and visual ratings
were significantly correlated (P , 0.01; r . 0.90) to
phytotoxicity ratings (Table 3). Phytotoxicity was nega-
tively correlated to chlorophyll, whereas the relationship
was positive with percentage of control ratings. Therefore,
results obtained with the phytotoxicity scale were consid-
ered applicable for our purpose.

Among the six bands evaluated to detect herbicide injury
on waterhyacinth, only bands 2, 4, and 5 were significantly
correlated (P , 0.05) to phytotoxicity ratings (Table 4). A
stronger correlation for both herbicides (r of 20.78 and
20.74 for glyphosate and imazapyr respectively) was
obtained when band 4 was used in comparison to bands
2 and 5. The relationship between band 4 and phytotox-
icity was linear for all WAT. However, bands 2 and 5 had
inconsistent polynomial relationships through time. Often
the relationship between bands (2 and 5) and phytotoxicity
switched between a cubic and quadratic. Therefore, band 4
was considered to be the best spectral band to detect
phytotoxicity, as a linear model is much simpler to utilize
when predicting an outcome.

Table 3. Relationship of phytotoxicity rating scale rankings (P)
with chlorophyll (chl) and percentage of control ratings with
their respective Spearman’s correlation coefficients (r).

Herbicide Variable relationship r

Glyphosate P 3 chl 20.91*
P 3 % control 0.94*

Imazapyr P 3 chl 20.90*
P 3 % control 0.96*

* Indicates a significant correlation at P , 0.05.
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The relationship between band 4 and phytotoxicity was
negative; when pixel values decreased, phytotoxicity ratings
increased for each herbicide (Figures 1 and 2). The
strongest relationship between these two variables was
found at 2 WAT (r2 of 0.75 and 0.90 for glyphosate and
imazapyr respectively) (Figures 1 and 2). After 2 WAT, the
relationship between these two variables decreased regard-
less of the herbicide used.

Herbicide Injury Detection. Significant differences be-
tween treated and untreated plants were detected at 1, 3,
and 6 WAT when either band 4 or phytotoxicity ratings
were used (Table 5). In general, the severity of herbicide
injury increased as rates of both herbicides increased (P ,
0.05). Consequently, it is observed that an increase of
phytotoxicity corresponded to lower pixel values for band 4
(Table 5). On the other hand, the detection of herbicide
injury may vary according to the method used (e.g.,
phytotoxicity vs. band 4) and herbicide rate with respect to
WAT and season.

For instance, there was a significant difference (P ,
0.05) between nontreated and treated plants at 1, 3, and 6
WAT for both seasons when glyphosate was used according
to phytotoxicity ratings (Table 5). However, the detection
of injury using pixel values of band 4 is more evident in
higher rates of glyphosate at any WAT (Table 5). When
the herbicide imazapyr was used, phytotoxicity ratings were
able to significantly distinguish treated from nontreated
plants at 1, 3, and 6 WAT in the summer treatment and at
3 and 6 WAT in the fall treatment (Table 5). Contrary to
glyphosate injury, the detection of injury using pixel values
of band 4 was more evident after 1 WAT in higher rates of
imazapyr.

Herbicide Injury Prediction. Because the strongest
relationship between phytotoxicity ratings and pixel values
of band 4 occurred at 2 WAT for both herbicides, linear
equations were constructed using this time period
(Figures 1 and 2) to predict its corresponding herbicide
injury in the following weeks. The following formulas,
which are also depicted in Figures 1 and 2, were used to
predict herbicide injury using band 4:

Predicted glyphosate injury~13:95{0:20
(pixel value at band spectra of 760 to 900 nm) ½1�

Predicted imazapyr injury~14:90{0:25
(pixel value at band spectra of 760 to 900 nm) ½2�

The relationship between predicted and observed phyto-
toxicity values at 3, 4, 5, and 6 WAT for both herbicides
was linear and significant (P , 0.05) yielding r2 of 0.39
and 0.46 for glyphosate and imazapyr, respectively
(Figure 3). Therefore, the prediction of phytotoxicity was
possible with the use of Equations 1 and 2 for each
corresponding herbicide. Among the total predicted values
for both herbicides at 3, 4, 5, and 6 WAT, up to 75% fall
within the phytotoxicity scale range of 1 to 9. In addition,
when the observed phytotoxicity rating is low (, 2),
predicted phytotoxicity is likely to be either over- or
underestimated (Figure 3).

Discussion

Simulated Spectral Bands and Phytotoxicity. According
to this study, bands 2, 4, and 5 were correlated to
phytotoxicity when all data were pooled across WAT.
However, relationships between bands 2 and 5 to
phytotoxicity were not consistent throughout the study
when regression models were fit to weekly data. The
utilization of bands 2 and 5 would require the fitting of
different polynomial models over time to predict phytotox-
icity. The use of several models for predictive purposes
would be very cumbersome, time consuming, and ineffi-
cient; more importantly it would not lend itself as a practical
tool for aquatic plant management. These results contradict
those reported for terrestrial plants where the spectral region
that coincides with bands 2 and 5 has been suggested to be
sensitive to stress (Carter 1993, Carter and Knapp 2001).
Our results indicate that band 4 was the only spectral band
from Landsat 5 TM that was consistently related to
phytotoxicity using a simple linear regression model.

Band 4 and Herbicide Phytotoxicity. Band 4 is the only
spectral band from Landsat 5 TM that consistently
detected herbicide injury over time, differentiated non-
injured from injured plants, and successfully predicted
phytotoxicity in waterhyacinth (Figure 3). The observed
relationship between band 4 and waterhyacinth phytotox-

Table 4. Relationship between phytotoxicity rating scale
rankings (P) and pixel values of spectral bands 1, 2, 3, 4, 5,
and 7 with their respective Spearman’s correlation coefficients (r).

Herbicide Variable relationship r

Glyphosate P 3 band 1 20.13
P 3 band 2 20.61*
P 3 band 3 20.04
P 3 band 4 20.78*
P 3 band 5 20.57*
P 3 band 7 20.30

Imazapyr P 3 band 1 20.01
P 3 band 2 20.60*
P 3 band 3 0.12
P 3 band 4 20.74*
P 3 band 5 20.37*
P 3 band 7 20.02

* Indicates a significant correlation at P , 0.05.

444 N Invasive Plant Science and Management 3, October–December 2010



Figure 1. Linear relationship between band 4 and phytotoxicity when waterhyacinth is affected by glyphosate for every week after
treatment (WAT). Values are expressed as means (6 SE) for each variable. Regression line was drawn only when the relationship was
significant at a significance level of 0.05.
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Figure 2. Linear relationship between band 4 and phytotoxicity when waterhyacinth is affected by imazapyr for every week after
treatment (WAT). Values are expressed as means (6 SE) for each variable. Regression line was drawn only when the relationship was
significant at a significance level of 0.05.
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icity was negative. Adcock and others (1990) observed a
similar relationship between near-infrared (800 nm) and
phytotoxicity when soybean (Glycine max L.) was treated
with the herbicide paraquat. In aquatic habitats, injury due
to the effect of a biological control agent over a
homogeneous population of giant salvinia (Salvinia molesta
Mitchell) was distinguished with the use of near-infrared
(760 to 900 nm) (Everitt et al. 2005). A possible

explanation for the relationship between band 4 and
phytotoxicity is attributed to the increasing amount of dead
plant tissue present as weeks progressed, caused by losses in
pigment and cell integrity as a result of the herbicide
damage.

Commonly, when plants are injured with herbicides,
discoloration of plant tissues appears, progressing from a
general yellowing to necrosis (black, dead tissue) (Sense-
man 2007). Similarly, when glyphosate is used on
waterhyacinth, the progress and eventual destruction of
the plant stand is also gradual, with phytotoxicity
proceeding from wilting and yellowing to browning and
necrosis (Van et al. 1986). Discoloration causes energy in
the infrared region (band 4) to be absorbed (Gausman
1974) due the alteration of plant cell integrity and pigment
content (Murtha 1978). Consequently, pixel values of band
4 decreased as injury progressed. A similar relationship was
observed between visual disease ratings and a near-infrared
(800 nm) band when a fungicide was applied to control a
fungal disease in peanut (Arachis hypogaea L.) (Nutter et al.
1990).

According to our results, band 4 and phytotoxicity are
negatively correlated (Table 4) and correspond to the
progress of herbicide injury (e.g., yellowing to necrosis).
Although the relationship was significant, energy loss due
to lack of plant canopy could potentially be a factor in
altering the spectral response of band 4, limiting its
relationship with phytotoxicity ratings and the subsequent
lower r2 values observed. It was also observed that the
relationship between band 4 and phytotoxicity becomes
weaker as injury progressed (Figures 1 and 2). It is

Table 5. Phytotoxicity ratings (n 5 4) and band 4 pixel values (n 5 25) comparisons* at 1, 3, and 6 wk after treatment (WAT) for
each study (season) when waterhyacinth was treated with glyphosate and imazapyr. Data are represented as means.

Treatment

Glyphosate Imazapyr

Summer Fall Summer Fall

1 WAT 3 WAT 6 WAT 1 WAT 3 WAT 6 WAT 1 WAT 3 WAT 6 WAT 1 WAT 3 WAT 6 WAT

--------------------------------------------------------------------------------------------Phytotoxicity -------------------------------------------------------------------------------------------

Reference 2 c 2 b 1 b 2 d 2 d 2 c 3 c 2 c 1 b 2 b 2 d 2 c
13 9 a 9 a 9 a 8 ab 9 a 9 a 6 a 9 a 9 a 2 ab 7 a 9 a
0.503 9 a 9 a 9 a 8 a 9 a 9 a 5 ab 9 a 9 a 2 ab 6 b 8 a
0.253 8 b 8 a 8 a 7 b 8 b 9 a 4 b 9 a 9 a 3 a 6 b 8 a
0.1253 8 b 8 a 9 a 5 c 6 c 7 b 5 ab 8 b 9 a 3 a 4 c 4 b

------------------------------------------------------------------------------------------------- Band 4-------------------------------------------------------------------------------------------------

Reference 59 a 40 a 37 a 60 ab 63 a 89 a 59 a 40 a 37 a 60 bc 63 a 89 a
13 33 e 0 d 0 b 50 c 25 c 26 cd 55 ab 16 c 27 b 61 abc 44 b 26 c
0.503 37 d 37 a 0 b 65 a 32 b 23 d 53 b 18 bc 22 c 71 a 43 b 34 c
0.253 46 b 14 c 35 a 46 c 33 b 32 c 56 ab 19 bc 11 d 70 ab 49 b 53 b
0.1253 42 c 33 b 33 a 53 bc 32 b 50 b 55 b 20 b 21 c 53 c 60 a 53 b

* Means within columns followed by same letter are not statistically different (P 5 0.05) according to Fisher’s Protected LSD.

Figure 3. Linear relationship between predicted and observed
phytotoxicity at 3, 4, 5, and 6 wk after treatment (WAT) when
waterhyacinth was treated with glyphosate (open circles, solid
line) and imazapyr (closed circles, dashed line). Values are
expressed as means for each variable.
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suggested that a decrease of the ratio of vegetation cover to
water background (Best et al. 1981), which consequently
limits the reflectance on this band, may influence the
relationship. Injured waterhyacinth plants were observed to
sink at the bottom of the tank by 2 WAT, which increased
exposed water surface area. Another limiting factor that
may alter the spectral response of band 4 may be the
presence of dry or wet dead tissue. Studies conducted by
Carter (1993) stated that dehydration due to stress affects
the spectral response of infrared reflectance. For instance, if
plant tissues are dead but air-dried, reflectance in band 4 is
higher than if they are dead but still wet (Gausman 1974;
Murtha 1978). In our study, dead dry and wet plant tissues
were not differentiated at the time of data collection, which
may have affected the variation of band 4 for the same
phytotoxicity rating.

Despite these limitations, band 4 could be used to
detect herbicide injury and differentiate noninjured from
injured plants remotely, and to collect data that were
comparable to phytotoxicity visual ratings. Such detection
was possible at early, middle, and late stages of herbicide
injury over the two growing seasons when either band 4 or
phytotoxicity ratings were used. However, the detection of
injury was better after 1 WAT when imazapyr was used,
perhaps because of a slower herbicidal effect in the plant. It
has been reported that detection of injury using near-
infrared reflectance is possible if the herbicide used can
cause foliar damage (Adcock et al. 1990), as imazapyr and
glyphosate do in susceptible plants. Other studies have
reported that near-infrared is useful to detect injury
produced by the auxin-mimic herbicides dicamba (Hick-
man et al. 1991).

Predicting Herbicide Injury. Herbicide injury was
predicted for each herbicide and compared to observed
values for the same WAT. According to this relationship, it
was observed that injury prediction is consistent when
phytotoxicity ratings are greater than 2. Under- or
overestimation may occur if phytotoxicity is lower than
2, which corresponded to untreated plants. Hickman and
others (1991) found similar limitations when herbicide
injury is low, but recommend the use of near-infrared
reflectance if the injury is moderate to severe. It has been
reported that near-infrared is sensitive if the stress is
sufficient to cause a severe damage to the leaf (Carter
1993). In addition, Murtha (1978) reported that when the
damage is ‘‘chronic,’’ near-infrared reflectance may or may
not change. Based on this information and since the
phytotoxicity rating scale used in our study uses visual
description of the plant based on color, it is possible that
untreated plants were responding to a different stressor
(e.g., nutrient deficiency) as well as to herbicide exposure,
while visual ratings remained the same. Therefore,
herbicide injury has to be developed enough (. 2) to

cause changes in band 4. Other factors, such as the presence
of flowers and leaf angle due the seasonality (Madsen
1993), may have limited the predictability of low-
phytotoxicity plants.

Management Implications. Remote sensing using a
spectral simulated data set for band 4 of Landsat 5 TM
was useful to detect and predict herbicide injury on
waterhyacinth affected with glyphosate and imazapyr.
Based on this result, band 4 is recommended as a potential
tool in a management plan to assess herbicide efficacy in
homogeneous populations of waterhyacinth during two
growing seasons. It is clear that as herbicide injury
increases, band 4 pixel values decrease.

The use of remote sensing may improve the effectiveness
and implementation of a vegetation management program
by facilitating the assessment of large herbicide applications
remotely. Based on the spectral response of band 4 as
observed in this study, results may guide the image analyst
to identify and differentiate targeted treated areas from
nontreated areas in an image. Once identified, the classified
treated areas can be analyzed in terms of area coverage and
spread by the target plant treated. Within the same treated
areas, estimations of herbicide injury severity or ultimate
control may be performed using band 4 values in
Equations 1 and 2, developed for glyphosate and imazapyr.
The outcome needs to be compared to the phytototoxicity
rating scale used in this study in order to estimate herbicide
injury. By knowing the estimated phytotoxicity rating of
plants within treated areas, it may help to elucidate which
homogeneous populations of waterhyacinth need to be
revisited to apply herbicide again and assure ultimate
control.

In terms of herbicide injury prediction after 2 WAT,
estimates can be made using Equations 1 or 2 to determine
eventual control when glyphosate or imazapyr, respectively,
are used. Predicted phytotoxicity , 2 is not considered
accurate and results may under- or overestimate herbicide
injury. The prediction of herbicide injury using remote
sensing may minimize monitoring efforts at single points
throughout the lake while maintaining acceptable assess-
ments.

Further Recommendations. According to Hickman et al.
(1991) data collected with handheld devices are as sensitive
as aerial photography. Moreover, aerial photography that
measures near-infrared in the same spectral region as band
4 (760 to 900 nm) from Landsat 5 TM was able to
distinguish giant salvinia under biological control stress
(Everitt et al. 2005). Therefore, the use of airborne or
commercial satellite data should be considered by the
aquatic plant management community to extend informa-
tion resulting from this study. Available data from
multispectral sensors with equivalent spectral resolution
to Landsat 5 TM, such as Landsat 7 ETM+ and SLIM6 are
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suggested. Both of these sensors have same spectral
resolution as Landsat 5 TM and are currently operable,
providing multispectral imaging from space.

The present study used only simulated spectral data from
Landsat 5 TM obtained at the canopy level and
recommendations were based upon this result. If data were
to be collected from space, reflectance is likely to be
attenuated by the atmosphere. Therefore, developed linear
equations from this study should be tested using real
Landsat 5 TM data acquired from natural and homoge-
neous populations of waterhyacinth treated with glyphosate
and imazapyr. Results may validate the performance of the
developed equations obtained in this study to detect
herbicide phytotoxicity, especially after 2 WAT. Moreover,
it might help to elucidate the effects of other factors not
measured in this study such as mixed pixels over reflectance
and ratio of vegetation cover to water background, as well
as temporal and spatial resolution. A successful validation
and accurate performance of these linear equations may be
extended to further assess phytotoxicity in nontarget plants
leading to the documentation of herbicide drift or off-
target effects from herbicide applications.

If imagery is not available, new handheld devices that
measure near-infrared within the same spectral range as
band 4 of Landsat 5 TM could potentially be used to
estimate herbicide injury in plants. Although the use of
near-infrared has been documented to detect herbicide
injury in soybean (Thelen et al. 2004), it has not been
evaluated for aquatic plants.

In addition to the previous discussion, further research is
needed to investigate the use of other spectral bands that
were not considered in this study. For instance, the red
edge spectral region (695 to 725nm) has been recently
reported to be sensitive to plant stress (Carter and Knapp
2001; Ustin et al. 2009). Previous studies reported that
shifts on the red edge may provide information regarding
chlorophyll content in the plant (Boochs et al. 1990; Filella
and Peñuelas 1994), which is evidently affected by
herbicide injury. Results may help to elucidate a better
spectral band (or bands) than band 4 from Landsat 5 TM
to detect herbicide injury or other plant stressors. Likewise,
information may help in the development of new sensors
useful in plant applications.

Sources of Materials
1 Miracle-Gro (24-8-16), Scotts Miracle-Gro Company, Marysville,

OH 43041.
2 Habitat, BASF Corporation, Research Triangle Park, NC 27709.
3 AquaPro, SePRO Corporation, Carmel, IN 46032.
4 Dyne-Amic, Helena Chemical Company, Collierville, TN 38017.
5 TeeJet 8002E, TeeJet Technologies, Wheaton, IL 60187.
6 Minolta SPAD 502 DL meter, Spectrum Technologies, Inc.,

Plainfield, IL 60585.
7 ASD Spectroradiometer, Field Spec ProH model FR, ASD, Inc.,

Boulder, CO 80301.

8 MatLab, version 7.4, The Mathworks Inc. Natick, MA.
9 SAS for Windows, version 9.1, SAS Institute Inc. Cary, NC.
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