
Applying narrowband remote-sensing reflectance
models to wideband data

ZhongPing Lee
Northern Gulf Institute, Mississippi State University, Stennis Space Center,

Mississippi 39529, USA (zplee@ngi.msstate.edu)

Received 24 November 2008; revised 2 March 2009; accepted 11 March 2009;
posted 13 May 2009 (Doc. ID 104425); published 5 June 2009

Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover
the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however,
are usually equipped with spectral bands that are wide in bandwidth (50nm or wider). In this study,
based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters,
and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing
is analyzed. It is found that simple adoption of a narrowbandmodel may result in>20% underestimation
in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted
absorption coefficients even under perfect conditions, although smaller (∼5%) uncertainties are found for
higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal
waters, on applying narrowband models to wideband data. © 2009 Optical Society of America
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1. Introduction

Ocean color remote sensing utilizes radiometric data
to derive, empirically or analytically, desired infor-
mation of subsurface constituents [1,2]. Operation-
ally, two types of satellite sensors are commonly
employed for the measurement of ocean color (spec-
tral upwelling radiance from below the surface that
emits to space). These sensors are contrasted by their
specifics in data collection: one sensor (such as the
Moderate Resolution Imaging Spectroradiometer
(MODIS) [3]) has medium (or low) spatial resolution
(a footprint of hundreds of meters or larger) with a
narrow bandwidth (20nm or narrower), while the
other (such as the Landsat [4], IKONOS [5], Quick-
Bird [6], or Advanced Land Observing Satellite
(ALOS) [7]) has a high spatial resolution (a footprint
of 30m or finer) with a wide bandwidth (50nm or
wider). Because of such contrast in their sensor char-
acteristics, the data collected by these sensors have
different applicability. For remote sensing of oceanic
waters, where in general, horizontal gradients of the

biogeochemical properties are mild, data with
medium to low spatial resolution are sufficient [8].
For remote sensing of coastal and inland waters,
however, due to reasons from small target areas to
land/river runoff effects, it requires sensors with high
spatial resolution to observe the intense geophysical
variations within a short distance. Such a difference
in the requirement of spatial resolution has an
impact on sensor designs. Because the pixel size of
medium-resolution data (MRD) is ∼10–30 times
larger than that of high-resolution data (HRD), a
sensor for MRD is able to reduce the bandwidth of
the spectral channels to about 10–20nm and still
maintain a high signal-to-noise ratio (SNR), which
is critical for reliably deriving subsurface properties.
For the case of HRD, there are two options to obtain
higher SNR: one option is to increase the integration
time, but this is impractical for polar orbiting satel-
lites, and prolonged integration time will decrease
the sharpness of an image; the other is to increase
the bandwidth of the spectral channels, as demon-
strated by the operational Landsat satellite, where
the bandwidths are ∼50–70nm.

For coastal and inland remote sensing, HRD is
required for meaningful and useful measurements
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of water quality (such as concentration of chloro-
phyll, load of suspended sediments, and water
clarity). Experimental sensors with both high spatial
and spectral resolutions (such as Hyperion on EO1
[9]) have shown great promise for coastal remote sen-
sing [10,11], but their SNRs are far from optimal for
remote sensing of oceanic waters. Numerous studies
have been carried out to obtain coastal biogeophysi-
cal information from Landsat measurements (e.g.,
Dekker et al. [12], Hellweger et al. [13], and Vincent
et al. [14]). For the derivation of water-quality para-
meters from HRD, generally there are two schools of
approaches: one is via empirical regressions (e.g.,
Vincent et al. [14], Zhang et al. [15], and Stumpf
et al.[16]), and the other is via analytical or semiana-
lytical models (e.g., Dekker et al. [12], Doxaran et al.
[17], and Heng et al. [18]). Empirical approaches
basically compile concurrent (or near concurrent)
in situ and satellite data and link the two data
sources statistically to achieve optimal regression
coefficients for a desired product (e.g., chlorophyll
concentration or Secchi depth). The empirical coeffi-
cients from such exercises are normally best applic-
able to the research areas and/or to the seasons
where the data are taken. They are, because of wide
variations of bio-optical properties [19], in general,
less applicable to other regions or at other seasons.
To overcome such limitations and to better character-
ize product uncertainties, it is desired and useful to
take approaches that are based on analytical or semi-
analytical models.
Fordatafromnarrowbandsensors(e.g., sea-viewing

wide field-of-view sensor or MODIS), semianalytical
models [20,21] based on the radiative transfer
equation have been developed to describe the remote-
sensing reflectance ðRrs; sr−1Þ, which is defined as the
ratio of water-leaving radiance ðLw;w=ðm2 nmsrÞÞ to
downwelling irradiance ðEd;w=ðm2 nmÞÞ just above
the surface, i.e.,

Rrsðλci Þ ¼
Lwðλci Þ
Edðλci Þ

: ð1Þ

Here λci is the center wavelength of band i.
For optically-deep waters, the semianalytical mod-

els for Rrs can be summarized into a generalized
mathematical form [20]:

Rrsðλci Þ ¼ Gðλci Þ
bbðλci Þ

aðλci Þ þ bbðλci Þ
: ð2Þ

HereG is a model parameter that varies with water’s
inherent optical properties (IOPs) [22], a ðm−1Þ is the
total absorption coefficient, and bb ðm−1Þ is the total
backscattering coefficient. With models like this, var-
ious algorithms have been developed to retrieve sub-
surface physical and biogeochemical properties
[23–25].
There are no semianalytical models developed

specifically for Rrs from wide band sensors (WBS).

Usually the models developed for narrowband
sensors are applied directly (e.g., Doxaran et al.
[17]), with IOPs considered as their corresponding
averages at each band, i.e.,

RrsðλWi Þ ¼ �GðλWi Þ
�bbðλWi Þ

�aðλWi Þ þ �bbðλWi Þ : ð3Þ

Here �bb and �a are band-averaged values at eachWBS
channel (λWi ). As model parameter G is commonly
considered as a function of bb=ðaþ bbÞ [20], �GðλWi Þ
can be evaluated with the band-averaged �bb and �a
values.

For remote sensing by a WBS, however, the
measured remote-sensing reflectance at band i is

RrsðλWi Þ ¼
R λui
λli

LwðλÞdλR λui
λli

EdðλÞdλ
: ð4Þ

with λli and λui the lower and upper wavelength
boundaries for band i, respectively. Here the sensor’s
response function at each band is considered as a per-
fect boxcar function and then omitted in the expres-
sion and in this study. Based on Eqs. (1) and (2), the
exact model formulation for remote-sensing reflec-
tance of optically-deep water measured by a WBS is

RrsðλWi Þ ¼
Z λui

λli
GðλÞ bbðλÞκðλÞ EdðλÞdλ=

Z λui

λli
EdðλÞdλ; ð5Þ

with κ ¼ aþ bb.
Because EdðλÞ is not spectrally constant,

mathematically and strictly speaking,

RrsðλWi Þ ≠
Z λui

λli
GðλÞ bbðλÞκðλÞ dλ: ð6Þ

Furthermore, G, bb, and κ (in particular the absorp-
tion spectrum) spectra are spectrally dependent (see
Mobley [26]) and, from mathematical principles,

RrsðλWi Þ ≠
Z λui

λli
GðλÞdλ

R λui
λli

bbðλÞdλR λui
λli

κðλÞdλ
: ð7Þ

Therefore,

RrsðλWi Þ ≠ �GðλWi Þ
�bbðλWi Þ

�aðλWi Þ þ �bbðλWi Þ : ð8Þ

Consequently, if we want to utilize Eq. (3) (for the
sake of simplicity) to represent Rrs data measured by
a WBS, it is necessary and important to know how
big the difference is between Rrs from Eq. (5) (the ex-
act form) and Rrs from Eq. (3) (the approximation),
how this difference varies with water properties,
and the likely impacts when this simple form is

3178 APPLIED OPTICS / Vol. 48, No. 17 / 10 June 2009



utilized for remote-sensing applications. To find out
and to understand the potential uncertainties and
impacts associated with the simple model, using
Landsat band specifics as an example,RrsðλWi Þ values
between the simple form and the spectrally-resolved
form are evaluated for various IOPs in this study, as
are the impacts of Eq. (3) on IOP inversions when it is
applied to WBS data.

2. Numerical Analysis

To evaluate the likely errors associated with the sim-
ple approximation [Eq. (3)], a series of numerical
simulations with various hyperspectral IOP values
were carried out. For this evaluation, a hyperspectral
(400–900nm, with an interval of 5nm), nadir-
viewing RrsðλÞ is simulated first with the following
equations [23]:

Rrs ¼
0:52rrs

1 − 1:7rrs
; ð9Þ

rrs ¼
�
0:089þ 0:125

bb
κ

�
bb
κ : ð10Þ

Here rrs is the nadir-viewing remote-sensing reflec-
tance just below the sea surface, and wavelength
dependence is omitted for brevity. bbw and bbp
(bb ¼ bbw þ bbp) are the backscattering coefficients
of pure water and particles, respectively; κ includes
the contributions of absorption coefficients of pure
water (aw), phytoplankton pigments (aph), and detri-
tus plus colored dissolved organic matter (adg).
For the calculation of Rrs spectra, hyperspectral

absorption and backscattering coefficients are gener-
ated with the following inputs: (1) Values of awðλÞ are
from Pope and Fry [27] (400–695nm) and Hale and
Querry [28] (700–900nm). aw values of Hale and
Querry are raised by 4% to match the aw value of
Pope and Fry at 700nm. Figure 1 shows the aw spec-
trum used in this study. (2) Values of bbwðλÞ are from
Morel [29]; (3) aphðλÞ is modeled as in Lee et al. [30]

with aphð440Þ values ranging 0:005–5:0m−1. For
λ > 720nm, aphðλÞ is considered as equal to
aphð720Þ. (4) adgðλÞ is modeled as an exponential
function of wavelength [31] scaled by adgð440Þ, with
a spectral slope of 0:019nm−1 and adgð440Þ values
ranging 0:005–5:0m−1. (5) bbpðλÞ is modeled as a
power-law function of wavelength [19] scaled by
bbpð440Þ, with an exponent of 0.5 and bbpð440Þ values
ranging 0:002–2:0m−1. A total of 12 sets of IOPs were
created covering an að440Þ range of ∼0:016–10:0m−1

and a bbð440Þ range of ∼0:004–2:0m−1, where að440Þ
and bbð440Þ values are not covarying and cover the
general range of oceanic and coastal waters [32].
As the focus here is to observe the potential uncer-
tainties introduced by a simple model like Eq. (3),
it is not necessary to carryout simulations with all
possible combinations of IOPs observed in natural
waters, although that might be required for the
development of an optimal scheme to correct the
wideband effects.

Landsat has four bands in the visible to near infra-
red that could be used for water remote sensing. The
bands are Band 1 (450–520nm), Band 2
(520–600nm), Band 3 (630–690nm), and Band 4
(770–900nm). For these Landsat bands, the varia-
tion of EdðλÞ within a band is less than ∼20% (see
Fig. 1). Further, because RrsðλWi Þ is derived by nor-
malizing the total Lw (which is proportional to Ed)
to the total Ed within a band [see Eq. (4)], the impact
on RrsðλWi Þ from Ed spectral variation within a band
is negligible (<∼ 1%); therefore Eq. (5) can be well
approximated as

RrsðλWi Þ ≈
Z λui

λli
RrsðλÞdλ: ð11Þ

With the simulated hyperspectral absorption and
backscattering coefficients, it is now straightforward
to calculate and compare RrsðλWi Þ values from Eq. (3)
and from Eqs. (9)–(11), respectively. To be consistent,
RrsðλWi Þ from Eq. (3) also utilized Eqs. (9) and (10),
but simply with band-averaged total backscattering
and total absorption coefficients as inputs. Note that
here sensor’s response function of each Landsat band
is omitted as it is nearly flat spectrally (within�10%)
for the primary portion of the bands [33].

If the sensor’s response function significantly
deviates from a perfect boxcar function, it should
be included in the integrations of Eqs. (4) and (11)
as in Bukata et al. [34]. Also, if a band covers the
400–450nm range, or any other ranges that contain
significant spectral variations of Ed, larger impacts
on RrsðλWi Þ from EdðλÞ variation could be expected
and a more strict formulation like Eq. (5) should
be applied.

3. Results and Discussion

Figure 2 presents examples of simulated hyperspec-
tral Rrs (solid line) and RrsðλWi Þ calculated by Eq. (3)
(open square) and by Eq. (11) (solid circle), respec-
tively. These circles and squares represent Rrs at

Fig. 1. Spectrum of pure water absorption coefficient (aw) used in
this study (line with dark circle). Also shown is a spectral shape of
EdðλÞ (thin line), modeled by MODTRAN with continental aero-
sols. The vertical bars indicate the four visible/near-infrared bands
of Landsat.
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the center wavelengths of the Landsat bands. As de-
monstrated in Dekker et al. [12,35], expanding the
bandwidth of the spectral channels will diminish
the sharpness of the spectral features on which re-
mote sensing of geophysical information relies.
Furthermore, it is not surprising to see that values
of RrsðλWi Þ calculated from Eqs. (3) and (11) are differ-
ent for various IOP combinations, and the differences
are not uniform. To quantify the error of the simple
approximation [Eq. (3)], Fig. 3 shows the percentage
difference, 100 × ðEq:3 − Eq:11Þ=Eq:11, for RrsðλWi Þ at
the four Landsat bands, along with their relation-
ships with the total absorption coefficient at
440nm. It is found that all RrsðλWi Þ from Eq. (3)
are smaller than that from Eq. (11), and the differ-
ence can be as large as ∼24%. The differences at
Bands 1–3 are much smaller (∼5%), however, for re-
latively turbid waters (að440Þ > ∼0:3m−1), which
provide a fundamental justification of applying forms
like Eq. (3) to WBS data over coastal turbid waters.
Because different IOPs (especially the spectral se-

lective characteristics of the absorption coefficient)
have different impacts on RrsðλWi Þ, errors associated
with RrsðλWi Þ at the four Landsat bands are not uni-
form. Both Band 1 (centered at 485nm) and Band 2
(centered at 560nm) experienced highest RrsðλWi Þ dif-
ference between Eqs. (3) and (11) when there are few-
er dissolved and/or suspended constituents in water.
This is because there are sharp (about 4–5 times) in-

creases of absorption coefficients of pure water that
Band 1 and Band 2 cover (see Fig. 1). These values
dominate the total absorption coefficient when
waters are clearer. Mathematically, for a series of va-
lues of xi that contains wide range of lower to higher
values, the inverse (1=�x) of the series’ average (�x) is
influenced more by the higher xi values, while the

Fig. 2. Examples of simulated hyperspectral Rrs, along with RrsðλWi Þ calculated by Eq. (3) (open square) and by Eq. (11) (solid circle).
Values in each chart indicate the total absorption coefficients at 440nm, which conceptually indicate that top left represents oceanic water,
top right for offshore water, lower left for near-shore water, and lower right for coastal turbid water.

Fig. 3. Percentage difference between values of RrsðλWi Þ calcu-
lated by Eq. (3) and by Eq. (11) for the four Landsat bands, respec-
tively. Because of the limited numerical simulations, this chart is
not intended to draw a definite relationship between the error and
the total absorption coefficient, but to indicate the likely uncer-
tainties for different IOPs.
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average of the individual xi’s inverse (1=xi) is influ-
enced more by the lower xi values. These facts ex-
plain why RrsðλWi Þ, which is in general inversely
related to total absorption coefficient, by Eq. (3) is
smaller than that by Eq. (11), and why there could
be big difference between Rrs from Eq. (3) and Rrs
from Eq. (11). Further, this fact implies that, if
Eq. (3) is used for semianalytical retrieval of water’s
IOPs, the inverted total absorption coefficient of a
wideband does not represent the band-averaged total
absorption coefficient at that band (see below).
When there are more dissolved and suspended

constituents (such as gelbstoff and phytoplankton)
in water, because they contribute most to the absorp-
tion coefficients at the shorter wavelengths and the
contributions are spectrally broad, the spectral fea-
ture of pure water absorption diminishes gradually.
Consequently, the RrsðλWi Þ error at Band 1 and Band
2 reduces to ∼5%.
At Band 3 (centered at 660nm) and Band 4

(centered at 835nm), on the other hand, because
the contribution from pure water dominates the total
absorption spectrum, the differences do not vary
much across the various IOPs. The difference of
RrsðλWi Þ at Band 3, however, is smaller (∼5%) than
that at Band 4 (∼15%), because at Band 3 aw only
varies in a range of ∼0:3–0:5m−1, while at Band 4
it varies from ∼2 to 6m−1.
To test the impact of wideband data and a simple

wideband model [Eq. (3)] on IOP retrievals, Eq. (11)-
simulated RrsðλWi Þ were used as inputs to derive par-
ticle backscattering and total absorption coefficients
following the quasi-analytical algorithm (QAA) ap-
proach [23,36]. In the process, Landsat Band 2 (with
center wavelength of 560nm) was considered as the
reference wavelength [23], and the actual band-
averaged total absorption coefficients were used,
i.e., assuming a perfect estimation of absorption coef-
ficient at the reference wavelength. With known
RrsðB2Þ and aðB2Þ, bbpðB2Þ at this band can be de-
rived algebraically as in Lee et al. [23]. Propagate
this bbp to Band 1 (with center wavelength of
485nm) with the known exponent (0.5, again, assum-
ing a perfect estimation), aðB1Þ is then derived from
known RrsðB1Þ. Figure 4 compares the derived aðB1Þ
with the known band-averaged values (open circle)
as well as að485Þ—the absorption coefficients at
the center wavelength (dark square). Clearly, when
no corrections are made for the wideband effects, it
could result in 20% overestimation of aðB1Þ even un-
der ideal conditions. In reality, especially for complex
coastal waters, larger uncertainties are associated
with the estimation of the absorption coefficients
at Band 2 and the exponent for the particle back-
scattering coefficient, and consequently larger
uncertainties of remotely derived aðB1Þ would be
expected [37].
For waters with higher absorption coefficients

(aðB1Þ > ∼0:2m−1), however, the QAA inverted
aðB1Þ (under ideal conditions) are quite consistent
(within �5%) with known aðB1Þ values, at least for

the limited data in this study. Such theoretical and
numerical results provide a justification for applying
narrowband semianalytical models with wideband
data over turbid waters (e.g., Heng et al. [18]),
although fine adjustments might be necessary to re-
flect band specifics and data characteristics. But, as
indicated earlier, wideband derived absorption coef-
ficients cannot be compared with narrowband mea-
surements, where a systematic overestimation is
expected (see Fig. 4, data with square symbol).

Note that the effects of wide bandwidth on atmo-
spheric correction is not discussed here, as it is out of
the scope of this study and that various approaches
to achieve satisfactory atmosphere correction can be
found in Hu et al. [38] and Liang et al. [39]. Because
empirical approaches of remote sensing directly link
desired products with sensor measured data, the
bandwidth effects are implicitly imbedded in the em-
pirical coefficients and, therefore, no extra correction
is necessary. The derived empirical coefficients, how-
ever, are usually site, season, and sensor specific, and
therefore not easily transferable and/or applicable
globally.

4. Conclusions

Remote-sensing systems with high spatial resolution
(∼30m or finer) capability are required for monitor-
ing coastal and inland waters. Such systems usually
carry sensors with spectral channels that are wide
(∼50nm or wider) in bandwidth to achieve desired
SNRs. For optically-deep waters, such a wide band-
width can cause more than 20% underestimation in
modeled values if a narrowband remote-sensing re-
flectance model with band-averaged IOPs are
simply applied. Inversely, applying a narrowband
model to wideband reflectance data may result in

Fig. 4. Percentage difference, ½ainversion − aknown�=aknown × 100, be-
tween inverted (using QAA with B2 as reference wavelength)
aðB1Þ and known absorption coefficients, for the same data used
for Figs. 2 and 3. The X axis represents known band-averaged va-
lues of aðB1Þ. The dark-square symbol represents a comparison
between inverted aðB1Þ and the absorption at the center wave-
length; the open-circle symbol represents a comparison between
inverted aðB1Þ and known aðB1Þ, i.e., a comparison of band-
averaged values.
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20% overestimation of the inverted absorption coef-
ficient, at least at Band 1 when water is relatively
clear. The differences can be larger or smaller as they
are dependent on IOPs, as well as on band location
and bandwidth. For Landsat Bands 1–3, we found
that for turbid waters (að440Þ > ∼0:3m−1) the band-
width-introduced uncertainties are relatively small
(<5%), which justifies the applications [12,18] of nar-
rowband semianalytical models with such wideband
data for coastal remote sensing.
Since remote-sensing reflectance is, in general, in-

versely dependent on the absorption coefficient, un-
derestimation of this reflectance is also expected if
a narrowband remote-sensing model developed for
optically shallow waters (e.g., Maritorena et al. [40],
Lee et al. [41]) is simply applied toWBSdata collected
over shallow regions, and its analytical inversion will
be more problematic because of the wideband effect
and the limited spectral channels [42].
To achieve accurate vicarious calibrations [43], or

to better retrieve water’s physical and biogeophysical
properties, however, the bandwidth related uncer-
tainties need to be accounted for, especially when
waters are relatively clearer. Separately, because
the band specifications of many others (such as
IKONOS, ALOS, and QuickBird) are nearly identical
to that of Landsat, the results and conclusions pre-
sented here are, in general, applicable to those
sensors.
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