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ABSTRACT 

Two classes of methods are designed for extracting features from spectro-temporal reflectance maps. 
Methods designed for these two approaches include various stepwise selection methods, windowing, and 
clustering techniques. The first class of methods is based on the consideration that all the elements of the 
spectro-temporal map are independent of each other (Mathur et al., 2006a). The second class of methods is 
based on the consideration that the elements of the spectro-temporal map have some vicinal dependency 
among them (Mathur et al., 2006b). Various data analyses are performed to evaluate the accuracies of the 
proposed methods. These include sub-sampling the original data at different rates in both spectral and 
temporal dimensions and then extracting features. Another set of analysis is done on data simulated 
according to various satellite and airborne sensor profiles. The efficacies of the new methods are 
demonstrated within an aquatic invasive species detection application, namely discriminating 
Waterhyacinth from other aquatic vegetation such as American Lotus. 

INTRODUCTION 

Various dimensionality reduction and feature extraction methods have been developed for both 
hyperspectral and multitemporal data (Kuo et al., 2002 and Jimenez et al., 1994). Temporal changes in 
hyperspectral signatures of vegetation, that occur due to varying growth patterns, could be utilized to 
discriminate between different plant species.  As a plant goes through various growth stages, these 
differences could possibly be observed in the hyperspectral signature characteristics that change over time. 

In recent years, a substantial amount of research has been done towards understanding and 
exploiting the underlying temporal features in multispectral and hyperspectral data. There are two basic 
forms of temporal approaches that researchers have studied. The first one is the bi-temporal approach, 
where two different time samples are considered and compared to extract useful information. The second 
one is the multi-temporal approach, where more than two time samples are considered and used to extract 
pertinent features to solve the classification problem at hand. 

Kumar et al. (2001) stated that often best spectral features algorithms ignore the fact that adjacent 
spectral bands are highly correlated. They also pointed out that using just a ‘single’ global set of features is 
inefficient utilization of the available data. The authors proposed two best features selection techniques. 
The top-down approach breaks up the bands in to two sets (not necessarily equal) and replaces the final 
bands with the mean values. The bottom-up approach linearly merges the adjacent bands that are highly 
correlated to form bigger sets such that the band combination is projected in the Fisher’s direction in order 
to maximize class discrimination. 

Zabih et al. (2004) pointed out that in feature space clustering, spatial correlation between adjacent 
pixels in the image data is neglected. Therefore the feature space clusters lack spatial coherence. The 
authors presented a clustering technique that addresses this issue. They tested this method on two types of 
images. The first one was a synthetically generated image that composed of a bright region in a dark 
background, both of the same area. The second was a color image. This image had 16 labels to be 
segmented. Their technique is based on finding good clusters based on a quality measure and the spatial 
coherence. The output was a set of spatially coherent clusters, which could then be used in any 
segmentation algorithm. 

For this study, an aquatic invasive species detection application is chosen, namely discriminating 
Waterhyacinth (Eichornia crassipes) from other aquatic vegetation such as American Lotus (Nelumbo 
lutea). Invasive aquatic plants like Waterhyacinth affect drainage for agriculture and forestry, aesthetics, 
drinking water quality, commercial and sport fishing, fish and wildlife habitat, habitats for other plants, 
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flood control, human and animal health, hydropower generation, irrigation, navigation, recreational 
boating, swimming, water conservation and transport, and, ultimately, land values. Most invasive aquatic 
plant species do not have natural control agents or competitors, as they have been introduced to this country 
from abroad, and they tend to dominate the aquatic systems to which they are exposed (Rockwell, 2003). 

Waterhyacinth grows in ponds, canals, freshwater and coastal marshes, lakes, and back water 
sloughs and oxbows along rivers. It reproduces primarily from runners or stolons via vegetative means. 
This method of vegetative reproduction allows the plant to quickly colonize large areas in relatively short 
periods of time. American lotus grows in pools, marshes and swamps. It is also found in ponds, lakes, 
backwater areas and shallow embayments of reservoirs. It reproduces by seed which may remain viable for 
decades. These two aquatic plant species are chosen for testing the proposed methods as they have very 
similar physical characteristics and thus they simulate a real life target detection problem.  

METHODOLOGIES 

This work is based on the analysis of hyperspectral, hypertemporal data. This data was acquired 
over a period if 16 weeks from 24th June to 26th October 2005 using an Analytical Spectral Devices (ASD) 
handheld spectroradiometer (Hatchell, 1999). The efficacies of the new methods are demonstrated within 
an aquatic invasive species detection application, namely discriminating Waterhyacinth from other aquatic 
vegetation such as American Lotus. These two aquatic plant species are chosen for testing the proposed 
methods as they have very similar physical characteristics and thus they simulate a real life target detection 
problem.  

Hyperspectral, multitemporal data is three-dimensional data that can be organized into a map 
where the x-axis is time, y-axis is wavelength, and z-axis is reflectance. This form of data organization is 
termed the spectro-temporal map (Mathur et al., 2006a and Mathur et al., 2006b) (Figure 1). These spectro-
temporal maps are then analyzed using the two methods proposed by Mathur et al. (2006a and 2006b). The 
proposed methods optimize the selection of pertinent features from the spectro-temporal space data. This 
work designs two classes of methods for extracting features from spectro-temporal reflectance maps. 
Methods designed for these two approaches include various stepwise selection methods, windowing 
approaching, and clustering techniques. 

 

 

Figure 1: Spectro-temporal maps 
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The first class of methods is based on the consideration that all the elements of the spectro-
temporal map are independent of each other. This method addresses the need to identify and extract the 
most useful information from a spectro-temporal map. Usefulness is measured in terms of signal 
classification on target detection. For this reason, instead of using the entire spectro-temporal map, 
pertinent features are extracted to reduce dimensionality. The classification accuracy increases if the 
distributions of the classes are statistically more separate in the feature space (Mathur et al., 2006a). 

The second class of methods is based on the consideration that the elements of the spectro-
temporal map have some vicinal dependency among them. The hypothesis is that as time progresses, the 
spectral response of different plants change differently. Thus, there should be areas in the spectro-temporal 
maps of the two plant species that are different. These areas can then be used as robust features to 
accurately distinguish the two species (Mathur et al., 2006b). 

The efficacies of the new methods are demonstrated within an aquatic invasive species detection 
application, namely discriminating Waterhyacinth from other aquatic vegetation such as American Lotus.  

DATA DEGRADATION 

The spectro-temporal maps were used for estimating the efficacies of the proposed algorithms. 
Also these maps were degraded in the spectral as well as temporal dimensions before applying the 
algorithms. This degradation was done by sub-sampling the original spectro-temporal data at different rates 
in both spectral and temporal dimensions and then extracting features. For example in one case the spectro-
temporal map is sub-sampled by a sub-sample rate of 500 in the spectral dimension and by a sub-sample 
rate of 4 in the temporal dimension. The resulting degraded data will have 4 bands (2150 original bands 
sub-sampled by a sub-sample rate of 500) and 4 dates (16 dates sub-sampled by a sub-sample rate of 4).  

As the original data is a weekly data, sub-sample rates in the temporal dimension simulate the 
conditions of bi-monthly data (sub-sample rate 8), monthly data (sub-sample rate 4), bi-weekly (sub-sample 
rate 2) and weekly data (sub-sample rate 1). This analysis provided information about the tradeoff between 
the spectral and temporal resolutions required and desired overall accuracies. These results are shown in 
Table 2 to Table 7. 

SIMULATED SENSORS 

The available ASD data was used to simulate different sensors’ data taking the available 
specifications into account. This simulated data was analyzed with the proposed feature extraction and 
classification methods to estimate their performance on satellite data that will be available in the future. 
This process will act as a pilot study to estimate the efficacy of the proposed methods when applied to data 
acquired from different air-borne and space-borne sensors. The original ASD data used to model sensor 
data is shown in Figure 2. 

It is important note here that the simulation of the sensor data has been performed under ideal 
conditions. The system may not perform as well on actual sensor data for the following reasons. Firstly, the 
ASD data is taken of plant species planted in tanks under controlled environmental conditions. These 
conditions are not similar to those of ponds and lakes. The data is collected using handheld 
spectroradiometers. Therefore, the error introduced due to the atmosphere is minimum. Compared to ASD 
data, the actual sensor data will contain much more atmospheric noise as it is a satellite based or airborne. 
Secondly, as the ASD sensor is a handheld spectroradiometer, it collects reflectance spectra of true pixels 
as it is held close to the material under observation. Much more mixing of pixels will be introduced in the 
case of the actual sensor data depending upon the spatial resolution of the sensor. Thirdly, the satellite and 
airborne image data typically have geo-rectification performed on them. These effects will further decrease 
the quality of the data. These three factors will hinder the overall classification accuracies of the actual 
Hyperion data. Thus the accuracies reported here do not reflect the real life situation. 

This analysis can however serve as a feasibility study for the end user. These results can provide 
the end user with information about which type of data will best solve the classification problem at hand 
and will assist in making a decision about which sensor is best suited for the task.  
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Figure 2: Original ASD waterhyacinth data. 
 
 
The sensor profiles used are: 

Advanced Land Imagery (ALI) (Bryant et al.) 
Compact Airborne Spectrographic imager (CASI) (CASI 550 Airborne Hyperspectral Solutions) 
GeoVantage (GeoVantage Precision Navigated Imagery: APPLICATIONS) 
Hyperion (Carman) 
Ikonos (Current and Future Sensor Systems) 
Rdacs (Lobitz et al., 1997) 
TRWIS-2 (Pearlman et al.) 
TRWIS-b (Pearlman et al.) 
TRWIS-d (Pearlman et al.) 
 
As an example, the sensor profile and simulated data is shown in Figure 3 and Table 1 (CASI 550 

Airborne Hyperspectral Solutions) respectively. 
 

Table 1: Sensor profile specifications for CASI.
Property name Property value 
Spectral range 400 – 1000 nm 
Spectral Channels 288 
Spatial Pixels 550 
Total Field of View 40.4 Deg. 
IFOV  1.34 mRad 
Spectral Width Sampling/Row 1.9 nm 
Spectral Resolution (FWHM) 2.2 nm 
Pixel Size 22.5 x 15 microns 
Dynamic range 14-bits (16384:1) 
Burst Data Rate – Mega-pixels/second 1.25 MPix/sec 
Spectral Smile ±0.8 pixels 
Keystone Distortion ±0.8 pixels 
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Figure 3: Data modeled according to CASI sensor profile 
 

RESULTS 

Table 2: Stepwise feature selection algorithm accuracies (%) of data with water band and thermal 
band removed 

Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 
(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 

1000 (2) 90 91 91 98 
500 (4) 99 100 100 100 

200 (10) 96 98 99 99 
100 (21) 95 100 100 100 
50 (43) 92 100 100 100 

20 (107) 99 100 100 100 
10 (215) 99 100 100 100 
5 (430) 97 100 100 100 

 
Table 3: Clustering algorithm accuracies (%) of data with water band and thermal band removed 

Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 
(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 

1000 (2) 97 98 98 100 
500 (4) 98 100 100 100 

200 (10) 100 100 100 100 
100 (21) 100 100 100 100 
50 (43) 100 100 100 100 

20 (107) 100 100 100 100 
10 (215) 100 100 100 100 
5 (430) 100 100 100 100 
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Table 4: Stepwise feature selection algorithm accuracies (%) of data with water band, thermal band 
and continuum removed 

Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 
(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 

1000 (2) 73 66 92 92 
500 (4) 87 76 85 85 

200 (10) 93 91 88 91 
100 (21) 98 93 93 100 
50 (43) 100 94 98 100 

20 (107) 100 98 99 100 
10 (215) 100 98 99 100 
5 (430) 99 99 99 100 

 
 
Table 5: Clustering algorithm accuracies (%) of data with water band, thermal band and continuum 

removed 
Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 

(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 
1000 (2) 79 94 92 92 
500 (4) 86 87 97 98 

200 (10) 100 100 100 100 
100 (21) 100 100 100 100 
50 (43) 100 100 100 100 

20 (107) 100 100 100 100 
10 (215) 100 100 100 100 
5 (430) 100 100 100 100 

 
Table 6: Stepwise feature selection algorithm accuracies (%) of data with water band and continuum 

removed 
Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 

(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 
1000 (2) 86 70 98 78 
500 (4) 89 79 98 74 

200 (10) 95 90 100 99 
100 (21) 97 93 98 100 
50 (43) 97 99 100 100 

20 (107) 100 99 98 100 
10 (215) 100 99 100 100 
5 (430) 100 100 100 100 

 
 

Table 7: Clustering algorithm accuracies (%) of data with water band and continuum removed 
Temporal sub-sampling rate (data collection frequency) Spectral sub-sampling rate 

(no of bands) 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 
1000 (2) 87 92 98 98 
500 (4) 100 89 99 97 

200 (10) 100 100 99 100 
100 (21) 100 100 100 100 
50 (43) 99 100 100 100 

20 (107) 100 100 100 100 
10 (215) 100 100 100 100 
5 (430) 100 100 100 0 
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Table 8: Stepwise feature selection overall accuracies (%) for data modeled according to different 
sensor profiles 

Temporal sub-sampling rate (data collection frequency) Sensor 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 
ALI 99 99 100 99 
CASI 99 100 100 99 
GeoVantage 96 94 98 99 
Hyperion 98 99 99 99 
Ikonos 92 90 99 100 
Rdacs 94 93 98 98 
Trwis 2 100 100 100 100 
Trwis b 94 98 99 97 
Trwis d 98 100 100 100 

 
Table 9: Clustering overall accuracies (%) for data modeled according to different sensor profiles 

Temporal degradation step Sensor 8 (bi-monthly) 4 (monthly) 2 (bi-weekly) 1 (weekly) 
ALI 100 100 100 100 
CASI 100 100 100 100 
GeoVantage 100 100 100 100 
Hyperion 100 100 100 100 
Ikonos 100 100 100 100 
Rdacs 100 100 100 100 
Trwis 2 100 100 100 100 
Trwis b 100 100 100 100 
Trwis d 100 100 100 100 

DISCUSSION AND CONCLUSIONS 

As seen from Tables 2 to 7, the over all accuracies generally increase as the degradation decreases 
in both spectral and temporal directions. This observation can be attributed to the fact that as the 
degradation decreases, the features available initially are more. This provides more information about the 
difference between the two plant species to the two proposed feature extraction techniques. Thus the 
algorithms extract optimum features that are based on more details available about the spectral and 
temporal change differences in the two plant species under consideration. 

It is however observed that the increase in overall accuracies for the clustering algorithms is 
quicker than that for the stepwise feature selection. Higher accuracies are also observed for the clustering 
algorithm than the stepwise feature selection in the case of data modeled according to the different sensor 
profiles. This general observation indicates that the clustering algorithm performs better as compared to the 
stepwise feature extraction algorithm. This inference could be explained as follows. 

The stepwise feature selection algorithm considers all the features in the spectro-temporal map as 
individual independent features. Thus the algorithm finds isolated features in the map that are supposed to 
work well together towards solving the overall classification problem. It forms a set of robust features that 
perform this task. It however, does not consider that the spectro-temporal features are actually highly 
correlated at many locations. This high correlation can attributed to the hypothesis that the changes in the 
reflectance of closely spaced wavelengths do not always change dramatically over time. This consideration 
is exploited in the clustering algorithm. The final clusters formed using this method, provide more localized 
group of features that work very well towards classifying the two plant species’ data. Specifically, Table 8 
and Table 9 provide a pilot study as to how effective the two algorithms will be if the data from the 
different considered sensors is available. This analysis can provide valuable information to the end user 
about what type of data is best suited to solve the classification problem at hand.  

Table 2 to Table 9 provide expected accuracies under scenarios of different time intervals between 
data collection. In these tables, analysis has been done for this interval to be two months, one month, two 
weeks and one week. For most cases, the accuracies increase as this interval decreases. 
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