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Abstract— Multihypothesis with phase diversity is introduced
into motion-compensated temporal filtering by deploying the
latter in the domain of a spatially redundant wavelet transform.
The centerpiece of this redundant-wavelet approach to multihy-
pothesis temporal filtering is a multiple-phase inverse transform
that involves an implicit projection significantly reducing noise
not captured by the motion model of the temporal filtering.
The primary contribution of the work is a derivation that
establishes analytically the advantage of the redundant-wavelet
approach as compared to equivalent temporal filtering taking
place in the spatial domain. For practical implementation, a
regular triangle mesh is used to track motion between frames,
and an affine transform between mesh triangles implements
motion compensation within a lifting-based temporal transform.
Experimental results reveal that the incorporation of phase-
diversity multihypothesis into motion-compensated temporal fil-
tering improves rate-distortion performance, and state-of-the-art
scalable performance is observed.

Index Terms— motion-compensated temporal filtering, multi-
hypothesis motion compensation, redundant wavelet transform,
scalable video coding

I. INTRODUCTION

It has been generally recognized that the goal of highly
scalable video representation is fundamentally at odds with the
traditional motion-estimation/motion-compensation (ME/MC)
feedback loop which hinders the achieving of a high degree
of spatial, temporal, and fidelity scalability. Consequently, the
use of 3D transforms, which break the ME/MC feedback
loop, are becoming a preferred approach to full scalability,
and a number of modern 2D still-image algorithms have been
straightforwardly extended to the third dimension (e.g., 3D-
SPIHT [1]) by employing separable 3D wavelet transforms.
This approach usually involves a wavelet-packet subband
decomposition wherein a group of frames is processed with a
temporal transform followed by spatial decomposition of each
frame. However, without MC, temporal transforms produce
low-quality temporal subbands with significant “ghosting” ar-
tifacts [2] and decreased coding efficiency. Consequently, there
has been significant interest in motion-compensated temporal
filtering (MCTF) [2–16] in which it is attempted to have the
temporal transform follow motion trajectories.
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In this paper, we describe a video coder using a 3D
wavelet transform with MCTF. The salient aspect of this coder
lies in that we employ multihypothesis motion compensation
(MHMC) within the MCTF to combat the uncertainty inherent
in estimating motion trajectories for MCTF, thereby achieving
rate-distortion performance significantly superior to the usual
single-hypothesis MCTF approach. Although multihypothesis
has been used in conjunction with MCTF before (e.g., [9–
11, 15] propose both spatially and temporally diverse mul-
tihypothesis MCTF predictions), in our proposed system,
we employ a new class of MHMC—phase-diversity multi-
hypothesis [17, 18]. Specifically, phase-diversity MHMC is
implemented by deploying MCTF in the domain of a spatially
redundant wavelet transform such that multiple hypothesis
temporal filterings are combined implicitly in the form of
an inverse transform. While the overwhelming majority of
previous MCTF techniques have deployed MCTF in the spatial
domain, a few recent approaches (e.g., [9, 10, 12–15]) have
used the shift invariance of spatially redundant transforms to
enable wavelet-domain MCTF. In contrast to these techniques,
our redundant-wavelet-multihypothesis (RWMH) approach to
MCTF exploits the transform redundancy not only for its shift
invariance, but for, more importantly, its potential for superior
temporal filtering via phase-diversity multihypothesis.

In [18, 19], we established analytically the performance gain
associated with RWMH when employed in the traditional hy-
brid coding architecture. That analysis considered a predictive
feedback loop under the assumption of a simple motion model
consisting of a translation plus noise. It was shown that, thanks
to the well-known robustness of overcomplete transforms to
noise in the transform domain, RWMH substantially reduced
the variance of the noise not captured by the translational
motion model, resulting in a significant reduction in the power
of the prediction residual in the MC feedback loop. As a
primary contribution of this paper, we apply this analysis to
the MCTF setting, showing that essentially this same principle
carries over to RWMH-based MCTF. Our analysis yields that
RWMH can reduce both the variance of the entire MCTF
highpass frame as well as the variance of the noise within
the MCTF lowpass frame by up to 7 dB with respect to an
equivalent system using spatial-domain MCTF.

To verify the analysis in a practical setting, we describe
a 3D-RWMH implementation that combines the RWMH
paradigm we introduced in [17, 18] with MCTF. We depart
from the common approach to MCTF which relies on tra-
ditional block-based motion models, opting instead for the
triangle-mesh lifting-based MCTF architecture pioneered in
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[2–4]. This mesh-based approach facilitates subpixel accuracy
as well as temporal filters longer than the Haar filter typically
encountered in MCTF systems—both aspects of which we em-
ploy to enhance performance of our 3D-RWMH system. Ex-
perimental results demonstrate that the incorporation of phase-
diversity multihypothesis into MCTF can achieve a significant
gain in rate-distortion performance over a comparable single-
hypothesis system, particularly so when there is substantial
noise not captured by the MCTF process. Additionally, the
results indicate that our 3D-RWMH coder usually outperforms
bidirectional MC-EZBC [7], a prominent 3D video coder with
state-of-the-art performance, and occasionally outperforms
H.264 [20], the state of the art in non-scalable hybrid coding.

Below, we describe our approach in greater detail. We first
review the RWMH technique from [17, 18] in Sec. II. Then,
in Sec. III, we describe in detail our 3D-RWMH approach
that incorporates RWMH into MCTF, including theoretical
analysis of the associated performance gain. In Sec. IV, we
consider some issues surrounding the implementation of 3D-
RWMH using MCTF with triangle meshes and subpixel ME
accuracy. We then present experimental observations in Sec. V,
and, finally, we make some concluding remarks in Sec. VI.

II. REDUNDANT-WAVELET MULTIHYPOTHESIS (RWMH)
MHMC [21] forms a prediction of pixel s[x, y, t] in the

current frame as a combination of multiple predictions in an
effort to combat the uncertainty inherent in the ME process.
Assuming that the combination of these hypothesis predictions
is linear, we have that the prediction of frame s[x, y, t] is

s̃[x, y, t] =
∑

i

wi[x, y, t]s̃i[x, y, t], (1)

where the multiple predictions s̃i[x, y, t] are combined accord-
ing to some weights wi[x, y, t]. One approach to MHMC is
to implement multihypothesis prediction spatially—the pre-
dictions s̃i[x, y, t] are culled from spatially distinct locations
in the reference frame; e.g., subpixel-accurate ME/MC and
overlapped block MC. Another approach is to deploy MHMC
temporally by choosing predictions from multiple reference
frames; e.g., B-frames and long-term-memory MC [22].

In [17, 18], we introduced a new class of MHMC—phase-
diversity MHMC—in which the multihypothesis-prediction
concept is extended into the transform domain. Specifically,
we performed ME/MC in the domain of a redundant, or
overcomplete, wavelet transform, and used multiple predic-
tions that were diverse in transform phase. Our approach to
phase-diversity multihypothesis, RWMH, takes place in the
domain of the redundant discrete wavelet transform (RDWT)1

which is an approximation to the continuous wavelet transform
that, in essence, removes the downsampling operator from
the traditional critically sampled transform to produce an
overcomplete representation. As illustrated in Fig. 1, the size
of each subband of an RDWT is the same as that of the
input signal. Additionally, a J-scale RDWT can be considered

1The RDWT first appeared as the algorithme à trous [23, 24] and has
subsequently been known by a variety of names including the undecimated
DWT (UDWT), the overcomplete DWT (ODWT), and discrete wavelet frames
(DWF).

to be composed of 4J distinct critically sampled transforms,
each corresponding to the choice between even- and odd-phase
subsampling in both the horizontal and vertical directions at
each scale of decomposition. In the RWMH paradigm outlined
in [17, 18], each one of these critically sampled transforms
“views” motion from a different perspective and thus forms
an independent hypothesis of the true motion of the video
sequence. A multiple-phase inverse RDWT combines these
multiple hypotheses into a single prediction. Specifically in
reference to (1), for a J-scale RDWT, the reconstruction from
DWT i of the RDWT is s̃i[x, y, t], 0 ≤ i < 4J , while
wi[x, y, t] = 4−J , ∀i.

In [17, 18], we described a video-coding system that incor-
porated RWMH into the MC feedback loop of the traditional
hybrid, block-based video-coding architecture. In [18, 19], we
presented an analytical derivation that quantifies the perfor-
mance gain of this hybrid RWMH architecture over single-
phase prediction. Key to this analysis was the fact that noise
in the RDWT domain undergoes a substantial reduction in
variance when the multiple-phase inverse RDWT is applied.
This noise reduction was due to the well-known fact that
the inverse RDWT is a pseudo-inverse operation and thereby
consists of a projection onto the range space of the forward
transform. Consequently, noise not captured by the motion
model is greatly reduced in the hybrid RWMH system, leading
to substantial reduction in the variance of the prediction
residual in the MC feedback loop and higher coding efficiency.
In fact, the analysis of [18, 19] predicted that, as ME becomes
highly accurate, RWMH can reduce the prediction-residual
variance by up to 7 dB regardless of the power of the noise.

III. MOTION-COMPENSATED TEMPORAL FILTERING WITH
REDUNDANT-WAVELET MULTIHYPOTHESIS

In this section, we introduce the RWMH concept into the
MCTF framework, in effect eliminating the MC feedback loop
from our RWMH system of [17, 18] and producing a fully
scalable 3D video coder. In essence, this 3D-RWMH coder
is based on the 3D coder of [2, 3] but with the key addition
of multihypothesis via RWMH. We overview the 3D-RWMH
system next, and then, in Sec. III-B, we apply the analysis from
[18, 19] to the 3D MCTF setting to quantify the performance
gain of the 3D-RWMH approach.

A. The 3D-RWMH System
As depicted in Fig. 2, the encoder of our 3D-RWMH video-

coding system first performs a spatial RDWT on each frame
and then performs MCTF in the redundant-wavelet domain.
This is in contrast to many prior MCTF techniques [2–8]
in which MCTF takes place in the spatial domain. Since
MCTF is performed in the RDWT subbands, it is overcomplete
spatially; consequently, before coding the temporal subbands,
we remove this spatial redundancy by performing an inverse
spatial RDWT on each frame. Intuitively, each RDWT phase
in each frame can be considered to have viewed the MCTF
from a different perspective and thus forms an independent
hypothesis about the temporal filtering taking place. The
inverse spatial RDWT implicitly combines these hypotheses
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into a multihypothesis estimate of what the true temporal
filtering should be. After the inverse spatial transform, the
temporally transformed frames are coded by a suitable 3D
coder.2

B. Analysis of 3D-RWMH
In this section, we show analytically that the multihypoth-

esis nature of the MCTF in the 3D-RWMH coder of Fig. 2
offers substantial performance gain over the usual approach of
spatial-domain MCTF. For the moment, in order to render the
analysis tractable, we assume that simple translational motion
takes place between frames and employ simple MCTF—
namely, a temporal Haar transform—implemented via lifting
[2–4]. We will consider more sophisticated temporal filtering
for the experimental results later.

Let s[x, y, t] be a video sequence sampled spatially on an
integer-pixel lattice and temporally at integer times and denote
the 2D spatial RDWT of frame s[x, y, t] at time t as the
collection of subbands S(k)[x, y, t],

{
S(k)[x, y, t]

}
k

= R
[
s[x, y, t]

]
. (2)

Given subbands S(k)[x, y, t], we define the inverse RDWT as

s[x, y, t] = R−1

[{
S(k)[x, y, t]

}
k

]
, (3)

which is a multiple-phase inverse equivalent to inverting each
of the 4J critically sampled DWTs constituting the J-scale 2D
RDWT and averaging the resulting reconstructions together.

Suppose s[x, y, t − 1] and s[x, y, t] are two consecutive
frames of a video sequence, and let Wt−1→t denote an
operator that maps the frame at time t−1 onto the coordinate
system of the frame at time t through the particular ME/MC
scheme of choice. Assuming that the operator Wt−1→t is
applied identically to each subband, Haar-based MCTF in the
RDWT domain would be implemented via lifting [2–4] as
{
H(k)[x, y]

}
k

=
{

1

2

(
S(k)[x, y, t]−Wt−1→t

[
S(k)[x, y, t− 1]

])}

k

, (4)

{
L(k)[x, y]

}
k

=
{
S(k)[x, y, t− 1] +Wt→t−1

[
H(k)[x, y]

]}
k
, (5)

where
{
L(k)[x, y]

}
k

and
{
H(k)[x, y]

}
k

are the lowpass and
highpass frames, respectively, of the temporal transform.

Within RDWT subband k, we adopt the simple translational
motion model from [25]. Specifically, we assume that the
current frame at time t is a simple displacement of the previous
frame plus residual noise not captured by the translational
motion; i.e.,

S(k)[x, y, t] = I
(
S(k)[x− dx, y − dy, t− 1]

)
+N (k)[x, y, t],

(6)
2For many 3D coders, such as 3D-SPIHT [1], a spatial forward DWT (not

shown in Fig. 2) is applied to each frame following the spatial inverse RDWT
of the 3D-RWMH system, since the coefficients resulting from 3D-RWMH
are in the DWT domain in only one dimension (the temporal dimension).

where (dx, dy) is the unknown translation and I(·) is a
linear interpolation operator used to resolve fractional-pixel
values. Furthermore, let us assume that operators Wt−1→t and
Wt→t−1 estimate the motion (dx, dy) as (d̂x, d̂y) such that

Wt−1→t
[
S(k)[x, y, t− 1]

]
= I
(
S(k)[x− d̂x, y − d̂y, t− 1]

)
,

(7)

Wt→t−1

[
S(k)[x, y, t]

]
= I
(
S(k)[x+ d̂x, y + d̂y, t]

)
.

(8)
The high- and lowpass frames, (4) and (5), respectively, then
become
{
H(k)[x, y]

}
k

=

{
1

2
I
(
S(k)[x− dx, y − dy, t− 1]

)
−

1

2
I
(
S(k)[x− d̂x, y − d̂y, t− 1]

)
+

1

2
N (k)[x, y, t]

}

k

, (9)

{
L(k)[x, y]

}
k

=

{
1

2
S(k)[x, y, t− 1]+

1

2
I
(
S(k)[x+ d̂x − dx, y + d̂y − dy, t− 1]

)
+

1

2
I
(
N (k)[x+ d̂x, y + d̂y, t]

)}

k

. (10)

In the system of Fig. 2, after MCTF takes place in the spatial
RDWT domain, an inverse spatial RDWT is applied to com-
bine the multiple MCTF hypotheses. Since the inverse RDWT
is a pseudo-inverse, this is tantamount to a projection onto
the range space of the RDWT following by a mapping back
into the original spatial domain. Since the noise N (k)[x, y, t]
not captured by the motion model of (6) is almost certainly
not in the range space of the RDWT, the mapping of the
RDWT-domain noise back to the spatial domain will result
in a reduction in noise variance.

Let us first consider the noise variance in the highpass
frame. In the spatial domain, the highpass frame (9) is

h[x, y] = R−1

[{
H(k)[x, y]

}
k

]
=

1

2
n[x, y, t]+

1

2
I
(
s[x− dx, y − dy, t− 1]− s[x− d̂x, y − d̂y, t− 1]

)
,

(11)

where we define n[x, y, t] to be

n[x, y, t] = R−1

[{
N (k)[x, y, t]]

}
k

]
, (12)

and invoke the fact that R−1 is shift-invariant under linear
fractional-pixel interpolation. In [18, 19], we employed the
analysis put forth by Girod [25, 26] to derive the variance of
a prediction residual such as given by (11) to be

νh =
1

4
νn +

1

4
Γss, (13)

where νn is the variance of n[x, y, t] and

Γss =
1

4π2

∫ π

−π

∫ π

−π
Φss(ωx, ωy)

(
2−2<

[
P (ωx, ωy)

])
dωx dωy.

(14)
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In (14), Φss(ωx, ωy) is the 2D power spectral density of
s[x, y, t]; P (ωx, ωy) is the 2D Fourier transform of the proba-
bility density function of the displacement error, (∆x,∆y) =
(dx, dy) − (d̂x, d̂y); <(·) denotes the real part of a complex
number; and we have assumed I(ωx, ωy) = 1 (i.e., sinc
interpolation [26]) in order to simplify the analysis.

Now turning to the lowpass frame, in the spatial domain,
(10) becomes

l[x, y] = R−1

[{
L(k)[x, y]

}
k

]
=

1

2
I
(
n[x+d̂x, y+d̂y, t]

)
+

1

2
s[x, y, t− 1] +

1

2
I
(
s[x−∆x, y −∆y, t− 1]

)
, (15)

where once again n[x, y, t] is given by (12). A straightforward
modification to our derivation in [18, 19] yields that the
variance of the lowpass frame (15) is

νl =
1

4
νn +

1

4
Λss, (16)

where

Λss =

1

4π2

∫ π

−π

∫ π

−π
Φss(ωx, ωy)

(
2 + 2<

[
P (ωx, ωy)

])
dωx dωy.

(17)
We argue that, for effective compression, MCTF should

serve to reduce the power in the highpass frame as much as
possible; i.e., MCTF should minimize the variance νh of (13).
Additionally, in the lowpass frame, the portion of the lowpass-
frame variance due to failure of the motion model should be
minimized, while the portion of the variance due to the video
sequence itself should be maximized to exploit the energy-
compaction property of the temporal transform to the largest
extent possible. That is, in (16), Λss should be maximized
while νn should be minimized.

Let us use the preceding analysis to compare the perfor-
mance of the 3D-RWMH system of Fig. 2 to an equivalent
system with MCTF operating in the spatial domain. In order
to make a quantitative evaluation, we assume that the noise
N (k)[x, y, t] not captured by the motion model of (6) is zero-
mean, white, and of variance νN . This white-noise model is
an obvious oversimplification since real MC noise signals will
typically possess a significant degree of correlation both be-
tween subbands as well as spatially within subbands. However,
due to a result derived in [27], assuming white noise permits
us to quantify the noise reduction due to the inverse RDWT
of (12) as

νn =
νN
5

[
1 + 4

(
1

16

)J]
, (18)

assuming that the wavelet filters underlying the J-scale 2D
RDWT are orthonormal. In Sec. V, we will return to this white-
noise assumption to examine the noise-reduction capabilities
of (12) on real MC noise signals. For now, however, let
us assume white noise and that the motion model of the
spatial-domain MCTF is as effective as its RDWT-domain
counterpart. That is, the translational motion model of both
temporal filterings fails to capture a residual noise of power ν0.

From (13), the difference (in dB) in variance of the highpass
band between the RWMH and spatial-domain approaches is

γh = 10 log10

(
νn + Γss
ν0 + Γss

)
, (19)

where νN = ν0 in (18). To quantify this difference, let us
assume, as was done in [25, 26], an isotropic signal power
spectrum,

Φss(ωx, ωy) =
2π

ω2
0

(
1 +

ω2
x + ω2

y

ω2
0

)− 2
3

, (20)

where ω0 = − ln(0.93), and an isotropic Gaussian
displacement-error density of variance ν∆ such that

P (ωx, ωy) = exp

[
−ν∆

2

(
ω2
x + ω2

y

)]
. (21)

Under these models, we numerically evaluate (19) versus
displacement-error accuracy β in Fig. 3 for several noise
variances, where β = 1

2 log2 (12ν∆) such that β = −1 for
half-pixel accuracy, β = −2 for quarter-pixel accuracy, etc.
We assume that J is large. We see that as MCTF becomes
highly accurate (β small), RWMH produces a 7-dB reduction
in highpass-frame variance as compared to the spatial-domain
system regardless of the strength of the noise not captured by
the motion model. Additionally, we observe that, at moderate
MCTF accuracy (0 . β . 2), the greater the noise variance,
the greater is the variance reduction of RWMH over the
spatial-domain system.

As pertaining to the lowpass frame, it is straightforward
to see that the integral in (17)—and consequently the Λss
component of νl in (16)—is maximized as ν∆ goes to zero,
as we would expect from intuition. The difference in the noise
component of the lowpass-frame variance is

γl = 10 log10

(
νn
ν0

)
. (22)

With νN = ν0, we have that γl ≈ −7 dB. Thus, we conclude
that RWMH can reduce both the highpass-frame variance and
the noise component of the lowpass-frame variance by up to
7 dB as compared to an equivalent spatial-domain system.

The analysis presented in this section is built upon the
assumptions of a simple translational motion model and MCTF
using simple Haar temporal filtering. These assumptions ren-
der the analysis tractable; however, for a practical imple-
mentation, better performance can be had if we employ a
more sophisticated MCTF that transcends these assumptions.
In the next section, we describe how we have implemented
3D-RWMH in practice. We note that the measures γh and
γl resulting from our analysis suggest, but do not guarantee,
increased coding efficiency in a practical setting; however, we
will see later in Sec. V that experimental results using the 3D-
RWMH implementation described next do indeed support the
main theoretical observations of this section.

IV. IMPLEMENTATION ISSUES

A. MCTF with Triangle Meshes
The assumption of a simple translational motion model in

theory is usually reflected in practice by imposing simple
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block-based MC. Consequently, the most common approach
to MCTF combines traditional block-based MC with tem-
poral filtering [4–10, 12]. These block-based techniques have
encountered a number of drawbacks in that the rigid block-
motion model fails to capture all aspects of the motion field,
leaving a significant number of pixels “unconnected” between
frames, while implementation of temporal filters other than
the simple Haar is hindered by these numerous unconnected
pixels. Additionally, in the case of 3D-RWMH, we wish to
avoid filtering of the discontinuous blocking artifacts arising in
block-based MCTF when inverting the RDWT to produce the
multihypothesis MCTF. As a consequence, for the implemen-
tation of 3D-RWMH which we will experimentally evaluate
below, we employ the lifting approach to MCTF of [2–4] that
not only facilitates longer temporal filters but also permits
ME/MC schemes more general than block displacement to be
implemented in an easily inverted fashion. Specifically, we use
the biorthogonal 5-3 filter formulated in [3, 4], which, when
applied in the RDWT domain, is

H(k)[x, y, t] = S(k)[x, y, 2t+ 1]−
1

2

(
W2t→2t+1

[
S(k)[x, y, 2t]

]
+

W2t+2→2t+1

[
S(k)[x, y, 2t+ 2]

])
, (23)

L(k)[x, y, t] = S(k)[x, y, 2t]+

1

4

(
W2t−1→2t

[
H(k)[x, y, t− 1]

]
+

W2t+1→2t

[
H(k)[x, y, t]

])
, (24)

and we drive the MCTF with triangle meshes similar to those
of [2, 3], thus producing smooth motion fields more suitable
to RWMH since they lack discontinuous block artifacts and
unconnected pixels.

As originally proposed, the mesh-based MCTF of [2, 3] uses
a uniform, regular triangle mesh resulting from the dividing
of the frame into square blocks and the splitting of each block
along its diagonal. The triangle vertices, or “control points,” of
this uniform mesh are tracked from one frame to the next via
the iterative hexagonal-refinement optimization of [28]. In our
implementation, we also use this regular triangle-mesh struc-
ture; however, we opt for the simpler block-based ME strategy
of [29] to determine control-point motion. Specifically, motion
into the next frame is estimated by centering a small block at
each vertex in the first frame and finding the best matching
block in the second frame. Motion of the control points from
the second frame to the third frame is tracked in this same
manner, and so on to subsequent frames. If the motion vectors
have integer-pixel accuracy, the control points in every frame
reside on the integer-pixel grid.

We search for the motion of the control points of the
mesh by minimizing a distortion metric that spans across all
subbands of the RDWT decomposition, as we did in [30].
Specifically, the motion vector, (dx, dy), for control point
(x, y) in the reference frame is the vector in the search window
about (x, y) in the current frame that minimizes the mean

absolute error (MAE),

MAE(x, y, dx, dy) =

1

B2

bB/2c∑

m=−bB/2c

bB/2c∑

n=−bB/2c
AE(x+m, y + n, dx, dy). (25)

The absolute error (AE) is

AE(x, y, dx, dy) =

2−J
∣∣∣BJ [x, y, t]−BJ [x+ dx, y + dy, t− 1]

∣∣∣+
J∑

j=1

2−j
(∣∣∣Vj [x, y, t]− Vj [x+ dx, y + dy, t− 1]

∣∣∣+
∣∣∣Hj [x, y, t]−Hj [x+ dx, y + dy, t− 1]

∣∣∣+
∣∣∣Dj [x, y, t]−Dj [x+ dx, y + dy, t− 1]

∣∣∣
)
,

(26)

where Bj , Hj , Vj , and Dj are the baseband, horizontal,
vertical, and diagonal subbands, respectively, at scale j. We
assume block size B is odd. In the search, motion vectors
are chosen from a window of size W > 0 such that −W ≤
dx, dy ≤ W . The evolution of a regular triangle mesh over
frames is illustrated in Fig. 4.

For an N -frame video sequence, this ME process results
in N − 1 motion fields regardless of the temporal filter used,
as illustrated in Fig. 5. We note that this is the same number
of motion fields produced by a traditional coder with a MC
feedback loop. Since each of the N−1 motion fields are mesh-
based and thus completely invertible, forward and backward
motion fields between each pair of frames can be calculated
from these N − 1 fields. Using these forward and backward
motion fields, affine transforms between the triangles of each
pair of frames are used to implement a motion-compensated
lifting-based filtering in the temporal direction. This temporal
filtering proceeds by mapping each triangle in a reference
frame into the current frame using an affine transform on
each triangle in each subband separately. Bilinear interpolation
between the surrounding four integer-pixel locations is used
to resolve subpixel positions produced by the affine mapping.

We can construct affine transforms between any two frames
by concatenating motion fields from the set of N − 1 mo-
tion fields produced by the above ME process. Multiple-
scale temporal transforms are thereby supported since these
concatenated motion fields can be used for affine transforms
at the higher temporal decomposition scales, as is illustrated
in Fig. 5.

We have found it beneficial to periodically “reset” the
triangle mesh rather than allow the ME of the control points
to continue indefinitely. Specifically, we track control-point
motion for N ′ frames and then reset the triangle mesh to
the initial uniform mesh (again by diagonally splitting square
blocks). We repeat this procedure for the next N ′ frames.
Fig. 5 illustrates the motion-tracking and mesh-resetting pro-
cedure for N ′ = 4 and N = 8.
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B. Subpixel Accuracy
The above ME procedure assumes integer-valued motion

vectors, while MC in the form of the affine transform employs
interpolation between integer-pixel values to resolve subpixel
positions arising in the mapping. In this section, we describe
modifications to the above ME/MC approach in order to
accommodate subpixel accuracy.

When the motion-vector resolution is increased to half-
pixel accuracy, the motion-vector search is first carried out
as described above for integer-pixel accuracy. Then, the eight
neighboring locations at a distance of

(
± 1

2 ,± 1
2

)
from the best

match location are searched to refine the motion vector to half-
pixel resolution. We note that, in the case that a motion vector
points to a location on the half-pixel grid in one frame, the
initial integer-valued search for the motion of the control point
into the next frame involves half-pixel locations. In this case,
x and y in (25) and (26) will refer to half-pixel locations while
dx and dy will be integer-valued. The subsequent refinement
search will involve both integer- and half-pixel locations. This
refinement process is recursively repeated to achieve quarter-
and eighth-pixel ME accuracy.

Recall that, for ME/MC involving triangle meshes, subpixel
accuracy is invoked in the affine-transform mapping of the MC
process. In the subpixel 3D-RWMH system, we use values on
the subpixel grid as the basis of the interpolation of the affine
mapping. Specifically, the affine-transform mapping from one
triangle to another uses bilinear interpolation applied to four
nearest locations on the subpixel grid. In practice, we achieve
subpixel accuracy for both ME and MC by interpolating
the entire RDWT subband both horizontally and vertically.
Afterward, ME of the control points and MC with the affine
transform are carried out as if on the integer-pixel grid, and the
resulting residual subbands are downsampled to their original
size.

V. EXPERIMENTAL RESULTS

We now present a series of experiments designed to in-
vestigate the performance of the 3D-RWMH technique in
practice. In Sec. V-A, we first present simplified simulations
designed to gauge the noise-reduction performance of RWMH
predicted by the analysis of Sec. III-B and embodied in Fig. 3
when RWMH is applied to real MC noise signals. Then, in
Sec. V-B, we turn our attention to real system performance.
Throughout this section, we focus on grayscale sequences.
Spatial RDWTs use the popular 9-7 biorthogonal filter with
J = 3 decomposition scales and symmetric extension at
the image boundaries. For control-point ME, a block size of
B = 17 is used, and motion vectors are searched in a window
of size W = 15. To code motion vectors, the H.261 variable-
length-code (VLC) table for motion-vector data (MVD) is used
for coding the integer part of the motion vectors, while any
subpixel part of the vectors is sent by appending a fixed-length
code to each Huffman codeword.

A. Results in Support of the Analysis
In Sec. III-B, in order to quantify the gain due to RWMH in

the form of γh and γl, we made the assumption that the noise

not captured by the motion model, N (k)[x, y, t], was white,
permitting the invocation of (18) to quantify the reduction in
noise variance due to the projection implicit in the multiple-
phase inverse RDWT. The assumption of white noise is an
obvious oversimplification since real MC noise signals will
likely possess a significant degree of correlation, both between
subbands as well as spatially within each subband.

However, we have observed empirically that N (k)[x, y, t]
does in fact undergo a substantial reduction in variance in
practice due to the inverse transform despite this oversim-
plification. For example, Table I gives γh and γl values
calculated on real MC noise signals between two frames of
the “Football” sequence. To measure the values in Table I, a
uniform triangular mesh is created in the reference frame by
diagonal subdividing of D×D blocks, and the control points
of this mesh are tracked into the current frame, where this ME
process is conducted with both reference and current frames
in the spatial domain. The resulting meshes are then used to
map between the two frames via affine triangular transforms as
described in Sec. IV-A. By using the same meshes for both the
spatial-domain and RDWT-domain MC processes to follow,
we effectively divorce the effects of ME from that of RWMH.

To empirically estimate γh, a motion-compensated frame
is calculated in the RDWT domain and subtracted from the
RDWT-domain current frame to create an RDWT-domain
highpass frame as indicated by (4). The equivalent process, us-
ing the same ME meshes, is carried out in the spatial domain,
creating a spatial-domain highpass frame. The RDWT-domain
highpass frame is then mapped to the spatial domain via the
multiple-phase inverse RDWT, and γh is calculated via (19)
using the ratio of the variances of the two highpass frames.
Table I shows the resulting γh values for a variety of values
of D and ME accuracy β.

Empirically estimating γl is somewhat less straightforward.
First, the RDWT-domain lowpass frame is created via the
update step of (5) using the RDWT-domain highpass frame
and the same meshes as before. An equivalent spatial-domain
lowpass frame is created through the same process applied
in the spatial domain. (16) indicates that the variance of the
lowpass frame is due to both the MC noise signal as well as
the video signal itself. Consequently, we estimate γl as

γl ≈ 10 log10

(
ν(RD)
l − ν(SD)

l

ν0

)
, (27)

where ν(RD)
l is the variance of the RDWT-domain lowpass

frame after having been mapped to the spatial domain, ν (SD)
l

is the spatial-domain lowpass-frame variance, and ν0 is an
estimate of the variance of the spatial-domain noise signal,
taken as the variance of the spatial-domain highpass frame
calculated above. In (27), we are assuming that the component
of lowpass-frame variance due to the video signal itself
(Λss in (16)) is the same for both the RDWT-domain and
spatial-domain lowpass frames such that the difference of the
variances rejects it from the calculation of γl. Table I shows
the resulting γl values for a variety of values of D and ME
accuracy β.

Table I offers a rough confirmation of the analysis of
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Sec. III-B and Fig. 3. Specifically, we see that RWMH does in
fact reduce the noise variance in both the highpass and lowpass
frames despite the fact that the white-noise assumption made
in Sec. III-B does not strictly hold in practice. We see that
decreasing D (i.e., increasing the number of mesh triangles)
results in a significant decrease in noise variance (smaller
γh and γl); this is as expected since we anticipate that
N (k)[x, y, t] will be more noise-like, at least spatially, the
finer the triangle mesh becomes. However, we have observed
that the mesh-based MC process maintains a significant degree
of correlation structure in N (k)[x, y, t] despite the size of D
which we believe is the reason that the γh and γl values in
Table I do not quite reach the 7-dB performance limit predicted
by Fig. 3. We see, however, that the reduction in highpass-
frame variance does tend to increase as the ME process
becomes more accurate (β decreases), which is consistent with
Fig. 3.

Before moving on to consider real system performance, we
note that, although Table I suggests we use as small a D
as possible for maximum RWMH variance reduction, small
values of D (i.e., a large number of triangles in the mesh)
are impractical due to the large motion-vector overhead and
dramatically increased computational complexity they entail.
Consequently, for the remainder of this section, we focus on
meshes with D = 16, corresponding roughly to the number of
motion vectors typically used in block-based systems in which
a macroblock size of 16× 16 pixels is common.

B. System Performance
It is clear that the reduction in highpass and lowpass

noise variances, γh and γl, do not necessarily translate into
improved rate-distortion performance in practice. Therefore,
we now verify RWMH performance with actual coding results.
We use the grayscale sequences shown in Table II in our
experiments, and we focus on temporal filtering with the
lifting 5-3 biorthogonal filter of (23) and (24) with J = 3
decomposition scales and symmetric extension at each end of
the video sequence. The triangle mesh driving this temporal
filtering is reset to the uniform mesh every N ′ = 4 frames; this
uniform mesh is the result of diagonal subdividing of 16× 16
blocks. Since 3D-SPIHT [1]—the core compression engine in
the 3D-RWMH system—produces an embedded coding, the
sequence is coded at exactly the specified target rate.

Initially, we focus on ME with integer-pixel accuracy. We
compare the rate-distortion performance of the 3D-RWMH
system to an equivalent spatial-domain MCTF system. The
spatial-domain technique (denoted “SD-MCTF”) performs
MCTF in the spatial domain and then subsequently employs
a critically sampled spatial transform and embedded coding.
In this system, a triangle-mesh ME procedure identical to
that of the 3D-RWMH coder is employed, and, like the 3D-
RWMH system, temporal decomposition takes place with 5-3
biorthogonal lifting with symmetric extension. This SD-MCTF
system is essentially a single-hypothesis version of the 3D-
RWMH coder and corresponds roughly to the system of [2],
except that the ME process is somewhat different, and 3D-
SPIHT, rather than JPEG-2000, is used to code the wavelet
coefficients.

The analysis derived in Sec. III-B and embodied by Fig. 3
predicts that the performance gain of the multihypothesis
MCTF of 3D-RWMH over the spatial-domain system depends
on how much residual noise is not captured by the triangular-
mesh motion model. The empirical results presented in Table II
bear out this analysis—for sequences in which the motion
model is sufficient for nearly all motion present (e.g., the
“Foreman” sequence), a modest gain on the order of 0.1 dB
is observed; however, for the sequences with more complex
motion (e.g., the “Football” sequence), the power of the noise
not captured by the mesh model is relatively large, and a more
significant gain on the order of 0.5 dB over the spatial-domain
system is seen. Figs. 6 and 7 illustrate that these observations
hold over a range of rates.

The triangular-mesh motion model used in these empirical
results is quite powerful and leaves only a modest amount of
residual noise uncaptured for many sequences. However, the
motion model does fail in certain situations. In Fig. 8, we have
contrived an example of such model failure. Specifically, we
have interleaved 16-frame subsequences from the “Football”
and “Susie” sequences to simulate scene changes for which
the mesh model results in substantial residual noise. For this
interleaved sequence, we see that the gain of 3D-RWMH
approaches 1 dB or more, again bearing out the analysis of
Sec. III-B.

We next gauge the performance of the 3D-RWMH system
against two state-of-the art coders. Specifically, we compare
to the bidirectional MC-EZBC system from [7] as well as
to H.264 [20]. Bidirectional MC-EZBC is a 3D video coder
employing traditional block-based MCTF in the spatial domain
and is largely considered the state-of-the-art for such fully
scalable coders. Temporal filtering is essentially a bidirectional
version of the Haar filter, with a lifting implementation pro-
viding 1

8 -pixel accuracy for ME/MC and appropriate measures
to compensate for “unconnected” pixels. On the other hand,
H.264 is the latest standard coder and is considered state-of-
the-art for non-scalable coding based on the traditional hybrid
architecture; we use H.264 JM 9.2 operating at High Profile,
Level 4 with all advanced coding modes activated, and a
frame-coding pattern of IBPBPB. . . . Experimental results for
these two systems, along with those for 3D-RWMH using
half-pixel accuracy in the ME of mesh control points, are
presented in Table II. Although the results are mixed, we
observe that 3D-RWMH with half-pixel accuracy usually
offers performance slightly better than that of MC-EZBC and
occasionally outperforms H.264.

As a final body of results, we compare the spatial scalability
of 3D-RWMH and MC-EZBC, both fully scalable coders.
Although our 3D-SPIHT implementation is not technically
resolution-scalable, we simulate reduced spatial resolution in
these experiments by decoding only the bits from the com-
pressed bitstream necessary for reconstruction at the particular
spatial resolution of interest; that is, only some subset of the
spatial subbands is reconstructed. Then, the inverse MCTF is
performed on only the available subbands. A coefficient coder
with greater scalability support, such as JPEG-2000, would
permit achieving such scalable reconstruction in practice. To
quantitatively measure performance at reduced spatial resolu-
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tion, we calculate a PSNR with respect to a reduced-resolution
version of the original sequence obtained via discarding sub-
bands from a spatial 2D DWT of each frame of the sequence.
Although this is not perhaps the best manner in which to create
a reduced-resolution sequence—the spatial DWT offering less
than ideal anti-aliasing performance—one would expect that
wavelet-based scalable coders such as 3D-RWMH and MC-
EZBC would not perform any “better” than such a sequence at
reduced-resolution, and so it constitutes a reasonable bench-
mark with which to compare the relative performance of the
two algorithms. The resulting rate-distortion performance of
3D-RWMH with half-pixel-accurate ME and MC-EZBC is
graphed in Fig. 9 for decoding taking place at full-SIF, quarter-
SIF (QSIF), and quarter-quarter-SIF (QQSIF) resolutions. We
observe that the spatial-scalability performance of 3D-RWMH
is roughly comparable to that of MC-EZBC, with 3D-RWMH
outperforming MC-EZBC somewhat at lower rates. Sample
reconstructed images are shown in Fig. 10, and we observe
that, perceptually, the two techniques perform similarly at
reduced spatial resolution.

VI. CONCLUSIONS

In this paper, we presented a system that introduced phase-
diversity multihypothesis into MCTF by deploying MCTF in
the domain of a redundant wavelet transform and exploit-
ing the transform redundancy to provide multiple hypothesis
temporal filterings that were diverse in transform phase. The
centerpiece of the work we reported here was an analysis of the
performance of the proposed RWMH-based MCTF under the
assumption of a simple translational motion model and simple
Haar-based MCTF. Key to this analysis was the fact that noise
in the RDWT domain undergoes a substantial reduction in
variance when the multiple-phase inverse RDWT at the heart
of RWMH is applied due to the well-known fact that this
pseudo-inverse contains a projection onto the range space of
the forward transform. Consequently, noise not captured by the
motion model is greatly reduced in an RWMH system, leading
to substantial reduction in both the overall variance of the
MCTF highpass frame and the variance of the component of
the lowpass frame due to noise. In fact, our analysis predicted
that MCTF using RWMH can reduce both of these variances
by up to 7 dB compared to those of an equivalent spatial-
domain system.

For implementation purposes, we departed from the block-
based motion models commonly employed in MCTF by imple-
menting temporal filtering with mesh-based lifting. In essence,
this 3D-RWMH implementation combined the flexibility and
scalability of the mesh-based lifting MCTF of [2, 3] with
the performance gains associated with RWMH. Additionally,
performance was enhanced by using half-pixel accuracy for
both describing the motion of the mesh as well as within the
affine transforms implementing the MCTF.

Experimental results presented support the theoretical anal-
ysis and demonstrate state-of-the-art coding performance.
Specifically, it was observed that the proposed 3D-RWMH sys-
tem outperformed an equivalent system using spatial-domain
MCTF, particularly so as noise not captured by the motion

model increased, as predicted by our analysis. Additionally, we
observed the 3D-RWMH system to usually perform slightly
better than MC-EZBC [7], a state-of-the-art fully scalable
coder with MCTF operating in the spatial domain. Addi-
tionally, 3D-RWMH occasionally outperformed H.264 [20],
the current state of the art in non-scalable hybrid coding.
Finally, we observed that 3D-RWMH offered quantitative
and perceptual performance for scalable decoding at reduced
spatial resolution equivalent to that of MC-EZBC.
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Fig. 1. A two-scale RDWT of a 2D image.
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Fig. 2. The 3D-RWMH video-coding system.
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Fig. 4. The regular triangle mesh in the first frame and its evolution over subsequent frames. Only the basebands of the frames are shown.
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VV0,2 VV2,4 VV4,6

Fig. 5. Motion fields for MCTF in the 3D-RWMH system for N = 8 and N ′ = 4. A small triangle in a frame indicates where the triangle mesh is reset
to the uniform mesh. Field Vi,j maps frame i to frame j; concatenated fields are V0,2 = V0,1 + V1,2, V2,4 = V2,3 + V3,4, and V4,6 = V4,5 + V5,6.
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TABLE I
γh AND γl CALCULATED BETWEEN FRAMES 50 AND 51 OF THE “FOOTBALL” SEQUENCE USING A UNIFORM MESH OF BLOCK SIZE D ×D IN THE

REFERENCE FRAME AND ME ACCURACY OF β .

γh (dB) γl (dB)
D β = 0 β = −1 β = −2 β = −3 β = 0 β = −1 β = −2 β = −3
2 −1.55 −1.45 −1.72 −1.84 −4.27 −3.51 −4.57 −4.96
4 −1.07 −1.08 −1.29 −1.33 −2.31 −2.31 −2.73 −2.97
8 −0.75 −0.75 −0.87 −0.92 −1.98 −1.95 −2.30 −2.37
16 −0.44 −0.46 −0.51 −0.53 −1.06 −1.07 −1.15 −1.19
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TABLE II
DISTORTION AVERAGED OVER ALL FRAMES OF THE SEQUENCE.

PSNR (dB)
SD-MCTF 3D-RWMH 3D-RWMH MC-EZBC

integer pixel integer pixel 1/2 pixel 1/8 pixel H.264
Football 29.3 29.8 30.0 29.6 33.8
Mother & daughter† 46.7 47.1 47.5 47.5 47.3
Susie 42.0 42.3 43.1 43.0 44.1
NYC 39.6 39.8 41.0 41.2 42.5
Foreman† 39.9 40.0 41.0 40.7 43.7
Coastguard† 34.7 34.7 35.2 34.6 35.5

Sequences are SIF (352× 240, 30 Hz) at 1267 kbps, except †which are CIF (352× 288, 30 Hz) at 1520 kbps.
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Fig. 6. Rate-distortion performance for “Football.”
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Fig. 7. Rate-distortion performance for “Susie.”
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Fig. 8. Rate-distortion performance for “Football/Susie” interleaved sequence.

IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, pp. 166–177, February 2006.



400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
22

24

26

28

30

32

34

36

Rate (kbps) of Encoding at Full SIF Resolution

Av
er

ag
e 

PS
NR

 (d
B)

3D−RWMH 1/2−pixel, SIF
MC−EZBC, SIF
3D−RWMH 1/2−pixel, QSIF
MC−EZBC, QSIF
3D−RWMH 1/2−pixel, QQSIF
MC−EZBC, QQSIF

Fig. 9. Rate-distortion performance for “Football” decoded at SIF, QSIF (176× 120), and QQSIF (88× 60) resolutions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Reconstructed images for frame 5 of “Football” encoded at 1267 kbps and decoded at reduced spatial resolution. (a) 3D-RWMH 1/2-pixel, SIF; (b)
MC-EZBC, SIF; (c) 3D-RWMH 1/2-pixel, QSIF; (d) MC-EZBC, QSIF; (e) 3D-RWMH 1/2-pixel, QQSIF; (f) MC-EZBC, QQSIF.
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