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ABSTRACT
An algorithm is presented which implements image watermarking
in the domain of an overcomplete, or redundant, wavelet trans-
form. This algorithm expands on a previous method which em-
ploys a traditional, critically sampled wavelet transform coupled
with perceptually-based watermark casting and optimal Neyman-
Pearson detection. Specifically, in the proposed method, the redun-
dancy inherent in the transform facilitates detection of perceptu-
ally salient texture local to a given spatial location and guides the
placement of watermarking energy so as to minimize the impact on
perceptual image quality. Additionally, the optimal detection strat-
egy is adjusted to account for the overcompleteness of the trans-
form. The performance of the proposed technique is compared to
that of its critically sampled counterpart and greater robustness
under attack by compression is observed.

1. INTRODUCTION
Watermarking of images is becoming increasingly of interest in
tasks such as copyright control, image identification, verification,
and data hiding. Spread-spectrum watermarking [1], one of the
most popular methods for image watermarking, embeds a white-
noise watermark into transform coefficients of an image and veri-
fies the presence of the watermark by measuring the correlation be-
tween the watermarked coefficients and the watermark sequence.
It has been shown that the discrete wavelet transform (DWT) is
an effective venue for the spread-spectrum method due to natural
similarities between the space-frequency tiling of the DWT and the
operating characteristics of the human visual system (HVS) [2].

As an alternative to the DWT, the redundant discrete wavelet
transform (RDWT) [3–5] has also been considered for watermark-
ing [6, 7]. In essence, the RDWT—often implemented as the algo-
rithme à trous [3, 4]—removes the downsampling operation from
the DWT to produce an overcomplete and shift-invariant trans-
form. From a mathematical perspective, the RDWT is a frame ex-
pansion, and frame expansions have long been known to be robust
to added noise. Specifically, white noise added in the transform
domain results in significantly reduced noise power in the original
signal domain due to the fact that the inverse frame operator is a
pseudo-inverse that involves a projection onto the range space of
the forward transform [8].

Intuitively, one would expect that the robustness to noise pro-
vided by frame expansions such as the RDWT would be ideally
suited to the spread-spectrum watermarking procedure. Indeed,
more watermarking energy can be accommodated in the RDWT
domain for the same distortion incurred in the original signal do-
main as compared to traditional DWT-based watermarking. How-
ever, it has been shown that the same pseudo-inverse projection
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that decreases the noise power also results in a corresponding de-
crease in correlation-detector performance, such that overcomplete
and complete transforms offer the same watermarking performance
from a theoretical perspective [7].

Still, the redundancy provided by the RDWT can be exploited
in ways other than for noise robustness. Since the redundancy in
the transform facilitates the location of edges and other salient fea-
tures in an image [9], it has been argued that the RDWT domain
is well-suited for perceptually guiding the casting of watermarks
[6]. In this paper, we demonstrate this advantage by adapting a
well-known, perceptually-based watermarking method, originally
formulated with the critically sampled DWT, to the overcomplete
RDWT.

Specifically, in this paper, we modify the pixel-wise masking
(PWM) technique pioneered by Barni et al. [2] for DWT-domain
watermarking and deploy it in the RDWT domain. In doing so,
we make modifications to both the PWM-DWT watermark-casting
and watermark-detection procedures. For watermark casting, we
develop a measure of local texture in the RDWT domain and use
that measure to guide the casting of the watermark, increasing wa-
termark strength in areas of high texture where the HVS is less
sensitive to the added watermark. As in [2], we employ a cross-
scale texture measure to gauge texture local to a given spatial posi-
tion. However, our proposed RDWT-domain texture measure more
accurately captures local texture since the equivalent DWT-based
technique must consider increasingly larger spatial regions as res-
olution decreases due to the changing temporal sampling of the
DWT. For watermark detection, we modify the blind correlation-
detection process of PWM-DWT, adjusting the Neyman-Pearson
detection formulation of [2] to account for the fact that detection
takes place in the setting of an overcomplete transform. Experi-
mental results show that our proposed PWM-RDWT technique is
more robust to attack by compression than the original DWT-based
technique of [2].

2. PWM-RDWT WATERMARKING
2.1. Watermark Casting

In spread-spectrum watermarking, the goal is to embed as much
watermark information into an image as possible so as to maximize
the correlation-detector performance while leaving the perceptual
quality of the image unchanged. As a consequence, the guid-
ing principle of perceptually-based spread-spectrum watermarking
is that the watermark information should be placed in locations
that are the least perceptible to the HVS. Locating those least-
perceptible areas accurately is key to placing large amounts of wa-
termark information into the image. We note that, as in [2], we
watermark only the transform subbands with the highest resolution
as a compromise between robustness and perceptual invisibility.

In the PWM-DWT method of Barni et al. [2], the perceptibility
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of each DWT coefficient is determined from the model of the HVS
originating in [10]. This model consists of three components—
orientation and level of detail, local brightness, and local texture—
which are combined in a product expression which is then used as a
weighting factor for the watermark information during watermark
casting. The third factor in the product estimates image texture for
a coefficient at scale l located spatially at (i, j) by examining the
variance in co-located 2× 2 blocks in each subband in the DWT,
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where Iθl is the DWT subband at orientation θ and scale l.
As used in (1), fixed-size blocks in a DWT subband corre-

spond to increasingly larger spatial areas in the original image as
the resolution of the subband decreases (l increases), resulting in
the texture measure being less local for the lower-resolution sub-
bands. Fig. 1(a) illustrates this effect in a two-scale DWT, wherein
it can be seen that the fixed-sized blocks cover an increasingly
larger spatial area as l increases. Additionally, the size of the
blocks that can be used in the texture estimation of (1) is limited
in practice since the blocks should not become larger than the size
of the lowest-resolution subbands when the number of scales of
decomposition is large.

However, because the RDWT is not downsampled, the sub-
bands have the same size as the original image for each level of
decomposition; therefore, decreasing subband resolution does not
increase the spatial area associated with a fixed-size block. Ad-
ditionally, we can employ a larger block size with the current co-
efficient itself as the center (the 2 × 2 blocks of PWM-DWT are
offset relative to the current coefficient). Consequently, more ac-
curate estimation of local texture activity surrounding the current
coefficient can be achieved in the RDWT domain. In our proposed
PWM-RDWT method, we replace (1) with
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wherein we have assumed n × n blocks centered about the cur-
rent coefficient. Fig. 1(b) illustrates that fixed-sized blocks in an
RDWT correspond to the same spatial area in each subband, in
contrast to the varying spatial area of the fixed-sized blocks in the
DWT of Fig. 1(a).

2.2. Watermark Detection
In the blind watermark-detection technique of PWM-DWT [2], a
Neyman-Pearson approach is adopted to minimize the probability
of missed detection of the watermark given a fixed false-detection
probability. In [2], the Neyman-Pearson detection threshold was
determined to be

Tρ = 3.97
q

2σ2
ρ (3)

for a false-detection probability of 10−8 under the assumption that
the correlation-detector output, ρ, is normally distributed, with σ2

ρ

being the variance of ρ when the image is watermarked with some
watermark other than the target watermark. In [7], the case of
watermarking with a tight-frame expansion was considered, and it
was determined that the Neyman-Pearson threshold for the tight-
frame case, T ′ρ, is related to the Neyman-Pearson threshold for the
critically-sampled case, Tρ, as

T ′ρ =
√
A Tρ, (4)

where A is the frame bound for the tight-frame expansion, and it
is assumed that the false-detection probability is the same in both
cases.

For our PWM-RDWT technique, we observe that the RDWT
is a tight frame only when one level of decomposition is used
[11, 12]. However, if the watermark is cast into only the highest-
resolution subbands of the transform (as was done in the PWM-
DWT approach of [2] and in our implementation of PWM-RDWT),
then the Neyman-Pearson threshold for PWM-RDWT will be given
approximately by (4) with A = 4 for a 2D transform and Tρ being
the threshold used for PWM-DWT as given by (3). Below, we ver-
ify experimentally the validity of this approximation to the optimal
threshold.

3. RESULTS
We compare our proposed PWM-RDWT to the PWM-DWT tech-
nique of [2]. For both techniques, we adjust the watermark strength
to the level of just-noticeable distortion (JND), and evaluate water-
mark detection using correlation-based detection with a Neyman-
Pearson threshold as described above. All transforms are imple-
mented using the popular biorthogonal 9/7 wavelet [13] with sym-
metric extension. We initially fix the block size for PWM-RDWT
to n = 3.

For PWM-RDWT, the detector response, correlation ρ, is cal-
culated for 1000 different watermarks—only one being the correct
embedded watermark—and the resulting detector responses shown
in Fig. 2. The magnitude of the correct watermark is comparatively
much larger than any of the “incorrect” watermarks.

Fig. 3 compares the detector response to the correct water-
mark for PWM-RDWT and PWM-DWT under attack with SPIHT
[14] compression. Also shown are the Neyman-Pearson thresh-
olds given by (4) and (3), respectively. As is evident in Fig. 3,
the PWM-DWT detector response falls below its optimal thresh-
old at a compression ratio of 61, while PWM-RDWT does not
cross its threshold until a compression ratio of 130. The amount of
watermark information embedded using the PWM-RDWT method
was considerably larger due to the more accurate locating of pixels
masked by the HVS.

Fig. 4 demonstrates the validity of (4) as an approximation
to the ideal threshold. We see that the second-highest detector
response is consistently below the approximate threshold (4) as
the compression ratio varies.

Finally, we consider a block size of n = 5 in Fig. 5. As can be
seen, increasing the block size results in slightly greater robustness
(a compression ratio of roughly 140 can be withstood using a block
size of n = 5). We have also tested larger block sizes, but did not
observe further improvement beyond n = 5.

4. CONCLUSIONS
In this paper, we have adapted the well-known PWM approach of
[2] to the context of a redundant transform by modifying the ap-
proach to texture estimation which guides watermark casting and
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by accommodating the overcomplete nature of the transform in
the Neyman-Pearson detection threshold. The proposed RDWT-
domain texture measure more accurately estimates local texture
activity since the equivalent DWT-based technique must consider
increasingly larger spatial regions as resolution decreases due to
the changing temporal sampling of the DWT. The resulting PWM-
RDWT technique is shown to produce increased watermark ro-
bustness as compared to the original PWM-DWT approach in the
face of a compression attack.
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Figure 2: Detector response for 1000 different watermarks for the
“Lenna” image with PWM-RDWT; n = 3.
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Figure 3: Detector performance for PWM-RDWT and PWM-
DWT [2] for the “Lenna” image under compression with SPIHT
[14]; n = 3.
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Figure 4: Detector response and second-highest response for the
“Lenna” image under compression with SPIHT [14]; n = 3.
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Figure 5: Detector response and second-highest response for the
“Lenna” image under compression with SPIHT [14]; n = 5
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