
 

 
Abstract —To overcome the dimensionality curse of 
hyperspectral data, the authors of the paper have investigated 
the use of grouping the spectral bands along with localized 
discriminant bases, followed by decision fusion to develop an 
ATR system for data reduction and enhanced classification of 
hyperspectral data. The proposed system is robust to the 
availability of limited training data. Initially, the entire span of 
spectral bands in the hyperspectral data is subdivided into 
subspaces or groups based on a performance metric. The groups 
are not allowed to grow beyond what is supported by the amount 
of available training data. Feature extraction is done using 
supervised methods as well as unsupervised methods. Further, 
decision level fusion is applied to the features extracted from 
each group. To reduce the effect of conflicting decisions by 
individual groups, a voting scheme called Qualified Majority 
Voting is adopted to combine decisions. The effectiveness of the 
proposed system is tested using a data set consisting of 
hyperspectral signatures of a target class, Cogongrass (Imperata 
Cylindrica), and a non-target class, Johnsongrass (Sorghum 
halepense). Cogongrass is an invasive species of plant whose 
monitoring has become important due to the extensive ecosystem 
damage that it causes. A comparison of target detection 
accuracies by the proposed system before and after decision 
fusion is done to illustrate the effect of the influence of each 
group of spectral bands on the final decision and to illustrate the 
benefit of using decision fusion with multiclassifiers.  
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I. INTRODUCTION 
Modern hyperspectral sensors acquire data in hundreds 

of spectral bands for each pixel in a scene, thereby allowing 
subtly different classes to be discriminated. Since the number 
of spectral bands is very large in hyperspectral data, the 
number of training samples needed for accurate classification 
is immense, and often unrealistic to achieve. This problem is 
known as Hughes phenomenon [1] or the “curse of 
dimensionality.” In traditional hyperspectral feature extraction 
methods, features are extracted from the data in the high 
dimensional space.  However, the study in [2] on the 
characteristics of high dimensional spaces has shown that high 
dimensional data can be projected to a lower dimensional 
space without the loss of significant discrimination 
information. Features are extracted from lower dimensional 
subspaces formed by linear projections of the original high 

dimensional space. The extracted features become inputs to 
classifiers for labeling the data into target and non-target 
classes.  

In the proposed method, the entire hyperspectral 
signature of a very high spectral resolution dataset is divided 
into adjacent disjoint groups based on a performance metric. 
This paper investigates several performance metrics that are 
functions of band correlation and/or class separation.  The 
resulting groups are linearly independent, contiguous, and 
cover the entire spectrum of the data. Features are extracted 
from each of these groups using supervised and unsupervised 
statistical methods.  Next, decision level fusion is applied to 
the features extracted from each group. To reduce the effect of 
conflicting decisions by individual groups, a voting scheme 
called Qualified Majority Voting (QMV) [3, 4]  is adopted to 
combine decisions. 

The proposed algorithm is tested on hyperspectral 
signatures obtained from the Analytical Spectral Device 
(ASD) [5] handheld spectroradiometer, consisting of 1625 
spectral bands in the range of 350-1975nm. A comparison is 
done between traditional hyperspectral feature extraction 
methods, such as greedy search best band selection [6-7], and 
the proposed algorithm. The results show that this technique 
out-performs traditional methods in terms of classification 
accuracy as well as computation time. 

II. METHODOLOGIES 
Figure 1 shows a overall block diagram of the proposed 
methodologies. 

A. Manual vs. Automated Grouping 
Grouping algorithms can be used to sub-divide 

hyperspectral data into groups of spectral bands, from which 
features can be extracted to perform classification. Several 
methods of grouping can be applied to divide the entire 
hyperspectral subspace. The number of groups formed 
determines the reduced dimensionality.  The authors have 
proposed and implemented a method by which the entire 
hyperspectral subspace can be projected into lower 
dimensional subspace in two different ways – manually 
grouping spectral bands into groups of fixed length, or 
grouping spectral bands based on a performance metric. 
Manual grouping is done by forcing a fixed number of bands 
into a single group. The entire hyperspectral signature consists  
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Figure 1. Overall block diagram of proposed methods. 

 
of hundreds of spectral bands, which are manually divided 
into groups of size 10, 20, and so on. Grouping spectral bands 
based on a performance metric is an automated process where 
bands groupings are based on the maximization of a 
predefined performance metric. Here, the groups are not 
necessarily of equal lengths.  Initially, adjacent pairs of 
spectral bands are grouped; the next step is to combine groups 
with adjacent bands or adjacent groups. This process is 
iterative until a stopping criterion is satisfied.  In this study, 
two stopping criteria were used: (i) further grouping with 
adjacent groups or spectral bands does not significantly 
increment the current value of the performance metric, or (ii) 
the size of the groups is not allowed to grow beyond what is 
supported by the amount of available training data. 

B. Performance Metrics 
It is desirable that the adjacent bands of hyperspectral 

data exhibit high correlation and maximum separation 
between the classes [4]. Hence, the lower dimensional 
subspaces are formed based on a performance criterion which 
is a function of these two properties. In this study, 
Bhattaacharyya distance (BD), Jeffries Matusita distance 
(JM), and area under the receiver operating characteristics 
curve (ROC) are used as measures of class separation. Ten 
performance metrics were investigated: Correlation (Corr), 
BD, JM, ROC, product of Corr and BD (Corr*BD), product of 
Corr and JM (Corr*JM), product of Corr and ROC 
(Corr*ROC), weighted sum of Corr and BD (Corr+BD), 
weighted sum of Corr and JM (Corr+JM), and weighted sum 
of Corr and ROC (Corr+ROC).  For each of the weighted sum 
metrics, weights ranged from 0 to 1 in step sizes of 0.1, and 
the sum of the two weights were forced to one. 

C. Feature Extraction 
Once the hyperspectral signature’s bands have been 

appropriately grouped, features are extracted from each group.  
The authors analyzed both unsupervised and supervised 

methods of feature extraction.  Unsupervised feature 
extraction methods included statistical measures, such and 
mean and variance, as well as eigen-based methods such as 
principal component analysis (PCA).  Supervised feature 
extraction methods included Fisher’s linear discriminant 
analysis (LDA). 

D. Classification and Decision Fusion 
Both parametric, such as maximum likelihood (ML), and 

nonparametric, such as k-nearest neighbor (k-NN), classifiers 
were investigated.  Two types of classification analyses were 
conducted.  In Analysis I, the features extracted from the band 
groups were forced into a single k-NN or ML classifier.  That 
is, only one classifier utilized. In Analysis II, the features 
extracted from each group are applied to that group’s 
classifier.  That is, multiple classifiers are used.  If there were 
G groups of spectral bands, G classifiers (k-NN or ML) were 
used.  Each classifier resulted in its own classification 
decision, and the G decisions were fused using QMV.  The 
QMV utilized a weighted vote from each of the G classifiers, 
where the weights were based on the accuracy of that 
particular group’s classifier.  If the group’s classification 
accuracy (based on training data) was ≤75%, then the weight 
was zero (i.e. that group was not actually allowed to vote).  If 
the group’s classification accuracy was >75%, then the weight 
was proportional to the group’s accuracy. These voting groups 
were referred to as the “discriminant bases”.   The final result, 
for both Analysis I and Analysis II, was a confusion matrix 
detailing the system’s classifications of the testing data. 

III. DATA COLLECTION 
The signatures were obtained with an ASD Fieldspec Pro 

handheld spectroradiometer [5], which has a spectral range of 
350 – 2500 nm, spectral resolution of 3 nm @ 700 nm and 10 
nm @ 1400/2100 nm, and uses a single 512 element silicon 
photodiode array for sampling 350 - 1000 nm and two 
separate, graded index Indium-Gallium-Arsenide photodiodes 
for the 1000 - 2500 nm range [26]. The signatures were taken 
in good weather conditions in Mississippi, U.S.A., in 2000-
2004 with the fiber optic sensor held NADIR at approximately 
shoulder height (4 feet) above ground. A 25° IFOV foreoptic 
was used, and the ASD unit was set to average ten signatures 
to produce each sample signature. 

The data set consists of hyperspectral signatures of a 
target class, Cogongrass (Imperata Cylindrica), and a non-
target class, Johnsongrass (Sorghum halepense). Cogongrass 
is among the world’s worst weeds, and it spreads at a rapid 
rate, displacing desirable native vegetation [ref]. Johnsongrass 
was chosen as the class to differentiate from Cogongrass in 
order to simulate realistic conditions, since many of the areas 
that are invaded by Cogongrass have substantial amounts of 
Johnsongrass present.  In total, 286 and 130 measurements 
were collected for the Cogongrass and Johnsongrass classes, 
respectively.  These signatures were jack-knifed into training 
and testing data sets for this study.  
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 
Figure 2 shows the number of groups formed for each of 

the performance metrics.  Table I shows the number of 
discriminant bases chosen when each of the classifiers is used 
for each automated grouping performance metric, feature 
extraction, and classifier investigated. Figure 3 shows the 
classifier performance for Analysis I and Analysis II when 
various feature extraction methods were investigated. It can be 
concluded that using supervised methods, such as LDA, is 
very beneficial.  Figures 4 and 5 show the overall accuracies 
when using LDA as the feature extraction technique for the k-
NN and ML classifiers, respectively.  In Figures 4 and 5, 
results for both grouping methods (manual and automated) 
and all ten performance metrics are shown. From Figures 4 
and 5, it is clear that the multiclassifiers (Analysis II) provide 
significant accuracy improvements.  Interestingly, when using 
manual grouping, group sizes of 10, 20, or 30 result in 
accuracies that are on par with the automated grouping.  For 
the automated grouping, the weighted sum performance 
metrics result in the highest overall classification accuracies.  
However, the accuracies are only slightly higher than those for 
the product performance metrics, particularly Corr*BD and 
Corr*JM.  And since the weighted sum metrics are more 
likely to become over trained, as compared to the product 
metrics, the product metrics may be more desirable.   

The proposed methods gave improved results, compared 
to traditional methods, such as the greedy search best band 
selection [6-7]. For this study’s dataset, the computation time 
of the greedy search algorithm was 3.02 hours. The grouping 
algorithm followed by decision fusion seems more complex; 
however, the computational time is drastically less. Grouping 
of the hyperspectral data took an average of 2 sec (for manual 
grouping) and 28.8 sec (for grouping using Corr+ROC 
performance metric). A comparison between analyses I and II 
clearly shows that decision fusion using QMV improves 
classification accuracies significantly. However, the 
multiclassifier approach did not require significantly more 
computational time.  After the grouping stage, the time taken 
for performing analyses I and II were 20.75 sec and 20.79 sec, 
respectively. 

 
Table I. Number of Discriminant Bases (Best Groups) 

for Automated Band Grouping 
 Mean 

kNN 
Mean 
ML 

Var 
kNN 

Var 
ML 

PCA 
kNN 

PCA 
ML 

LDA 
kNN 

LDA 
ML 

Corr 44 109 44 109 44 109 86 48 
BD 14 36 13 36 14 36 91 84 
JM 14 36 13 36 14 36 91 84 

ROC 15 34 14 34 14 34 91 83 
Corr*BD 14 33 13 33 13 33 91 83 
Corr*JM 14 31 14 38 14 37 108 85 

Corr*ROC 16 50 19 50 25 55 125 88 
Corr+BD 16 35 13 35 15 35 87 84 
Corr+JM 15 33 14 35 14 34 89 81 

Corr+ROC 17 48 25 57 25 51 120 82  
 
 

Group Size, Performance Metric 

N
um

be
r o

f g
ro

up
s

0
100
200
300
400
500
600
700

10
,C

orr

20
,B

D
30

,JM
40

,R
OC

50
,C

orr
*B

D

60
,C

orr
*JM

70
,C

orr
*R

OC

80
,C

orr
+BD

Corr
+JM

Corr
+ROC

Manual Grouping
Automated Grouping

Group Size, Performance Metric 

N
um

be
r o

f g
ro

up
s

0
100
200
300
400
500
600
700

10
,C

orr

20
,B

D
30

,JM
40

,R
OC

50
,C

orr
*B

D

60
,C

orr
*JM

70
,C

orr
*R

OC

80
,C

orr
+BD

Corr
+JM

Corr
+ROC

Manual Grouping
Automated Grouping
Manual Grouping
Automated Grouping

 
Figure 2. Total number of spectral band groups formed versus automated 
grouping performance metric (e.g. Corr, BD, etc) and versus manual group 
size (10, 20, etc). 

 

0

0.2

0.4

0.6

0.8

1

Mean Variance PCA LDA

Feature Extraction Algorithm

O
ve

ra
ll 

A
cc

ur
ac

y

Analysis I (kNN)
Analysis II (kNN)
Analysis I (ML)
Analysis II (ML)

0

0.2

0.4

0.6

0.8

1

Mean Variance PCA LDA

0

0.2

0.4

0.6

0.8

1

Mean Variance PCA LDA

Feature Extraction Algorithm

O
ve

ra
ll 

A
cc

ur
ac

y

Analysis I (kNN)
Analysis II (kNN)
Analysis I (ML)
Analysis II (ML)

 
Figure 3. Classification accuracies versus feature extraction method for 
automated band grouping when using Corr*BD performance metric. 
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Figure 4. Classification accuracies versus group size (manual grouping) and 
versus performance metric (automated grouping) for Analysis I and II when 
using LDA feature extraction and k-NN classifier. 
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Figure 5. Classification accuracies versus group size (manual grouping) and 
versus performance metric (automated grouping) for Analysis I and II when 
using LDA feature extraction and ML classifier. 
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V. CONCLUSIONS 
A new approach for analyzing and classifying high 

dimensional hyperspectral datasets has been proposed by the 
authors.  The proposed system utilizes four approaches, (i) 
grouping of adjacent spectral bands, (ii) feature extraction 
from resultant groups, (iii) classification of feature vectors, 
and (iv) optionally, fusion of the groups’ classification 
decision if a multiclassifier approach was used in (iii). The 
approaches were tested on experimental hyperspectral 
datasets, where the goal was to discriminate two similar 
vegetations, Cogongrass and Johnsongrass.  Ten performance 
metrics were investigated for the band grouping, where 
weighted sums of correlation and class separation (BD and 
JM) resulted in the highest target detection accuracies.  
Unsupervised and supervised feature extraction methods were 
investigated, and it was shown that the supervised methods, 
specifically LDA, significantly outperformed the other 
methods.  Two types of classifiers were investigated, k-NN 
and ML, resulting in similar classification accuracies. Finally, 
a single classifier versus a multiclassifier approach was 
investigated.  The multiclassifier approach, using QMV for 
decision fusion, resulted in significantly higher classification 
accuracies than the single classifier method.  In general, the 
automated band grouping using LDA feature extraction and 
multiclassifiers with QMV resulted in classification accuracies 
between 80% and 90%.  These results were quite impressive 
and promising, considering the difficulty level of the dataset, 
where two similar grasses were the target and non-target 
classes.  Furthermore, the computational time required for the 
proposed methods was significantly less than that required for 
existing methods, such as the greedy search best band 
selection. 
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