Applications of Four Dimensional Analysis to Examine Intensity Variations of Hurricane Lili using Aqua, Terra, and other Satellite Data

Mississippi State University
Pat Fitzpatrick, Nam Tran, Yee Lau, Sachin Bhate

National Center for Atmospheric Research
Qingnong Xiao, Xiaoyan Zhang

WorldWinds, Inc.
Elizabeth Valenti
I. Background on Hurricane Lili (2002)

II. Datasets and assimilation strategies

III. MM5 4DVAR work

IV. SST gridded data generation from satellite and buoy

V. Summary

VI. Commercial potential
I. Background on Hurricane Lili (2002)
HURRICANE LILI: A GOOD EXAMPLE OF THE LIMITATIONS OF OPERATIONAL INTENSITY FORECASTING
LILI WENT THROUGH ANOTHER BURST OF INTENSIFICATION THIS AFTERNOON... WITH THE CENTRAL PRESSURE FALLING FROM 954 MB TO 941 MB IN ABOUT 5 HR. THE HURRICANE HAS CONTINUED TO DEEPEN AT A SLOWER RATE SINCE 16Z...WITH THE CENTRAL PRESSURE FALLING TO 938 MB AT 20Z. THE MAXIMUM FLIGHT LEVEL WINDS FOUND BY THE VARIOUS AIRCRAFT SAMPLING LILI SO FAR ARE 136 KT...SO THE INITIAL INTENSITY IS SET TO 120 KT. LILI IS SHOWING SIGNS OF PEAKING...AS THE AIRCRAFT AND SATELLITE IMAGERY INDICATE THE BEGINNING OF AN OUTER EYEWALL THAT WILL LIKELY BRING A HALT TO THE CURRENT INTENSIFICATION. (TEXT DELETED)

IN ADDITION TO THE CONCENTRIC EYEWALLS...THE ACTUAL INTENSITY IS CATCHING UP WITH THE SATELLITE SIGNATURE AND THE OUTFLOW IS BEING RESTRICTED TO THE WEST AND SOUTHWEST BY AN UPPER-LEVEL TROUGH. THESE THINGS SUGGEST THAT LILI SHOULD PEAK IN THE NEXT 6-12 HR THEN UNDERGO FLUCTUATIONS IN STRENGTH UNTIL LANDFALL. REGARDLESS OF THE EXACT INTENSITY...LILI SHOULD MAKE LANDFALL AS A MAJOR HURRICANE.

FORECASTER BEVEN

FORECAST POSITIONS AND MAX WINDS

<table>
<thead>
<tr>
<th>Time</th>
<th>Position</th>
<th>Pressure</th>
<th>Wind</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>02/2100Z</td>
<td>25.9N</td>
<td>90.0W</td>
<td>120 KTS</td>
</tr>
<tr>
<td>12HR VT</td>
<td>03/0600Z</td>
<td>27.5N</td>
<td>91.4W</td>
<td>125 KTS</td>
</tr>
<tr>
<td>24HR VT</td>
<td>03/1800Z</td>
<td>29.8N</td>
<td>92.3W</td>
<td>125 KTS...INLAND</td>
</tr>
<tr>
<td>36HR VT</td>
<td>04/0600Z</td>
<td>32.2N</td>
<td>91.9W</td>
<td>65 KTS...INLAND</td>
</tr>
<tr>
<td>48HR VT</td>
<td>04/1800Z</td>
<td>36.1N</td>
<td>89.0W</td>
<td>35 KTS...INLAND EXTRATROPICAL</td>
</tr>
<tr>
<td>72HR VT</td>
<td>05/1800Z</td>
<td>45.0N</td>
<td>74.0W</td>
<td>30 KTS...INLAND EXTRATROPICAL</td>
</tr>
</tbody>
</table>
AFTER QUICKLY STRENGTHENING TO A STRONG CAT. 4 HURRICANE, LILI WEAKENED EVEN MORE RAPIDLY THAN IT HAD INTENSIFIED.

LILI NEAR ITS MAXIMUM INTENSITY OF 145 MPH

LILI MAKING LANDFALL AS A CAT. 1 HURRICANE
OFCL MODEL FORECASTS

Wind Speed (kt)

Date (Month/Day)

9/30 10/1 10/2 10/3 10/4

Hurricane Lili
Sept-Oct 2002

LANDFALL
LILI’S RAPID WEAKENING JUST BEFORE LANDFALL IS NOT WELL UNDERSTOOD.

WAS IT CAUSED BY:

- AN INTERNAL (INNER CORE, E.G. EYEWALL) MECHANISM?

- VERTICAL WIND SHEAR, OR OTHER ENVIRONMENTAL INFLUENCES SUCH AS MOISTURE, STABILITY?

OR

- THE OCEAN, SUCH AS ISIDORE’S WAKE AND/OR COOLER SHELF WATERS?

By analyzing conventional, NASA/NOAA satellite, and reconnaissance data, and assimilating in a mesoscale model for sensitivity runs, we are testing these hypotheses.

We are also analyzing Lili’s rapid intensification on 10/2/02, which also was not predicted accurately.
II. Datasets and assimilation strategies
• Conventional (Radiosonde, METAR, buoy, ships)
• AVN model data for boundary conditions
• Satellite:
 SST: Terra, Aqua, TRMM, AVHRR
 T, Td profiles: Terra
 Surface wind: QUIKSCAT
 Cloud-drift winds: GOES
• Reconnaissance data (T, Td profiles)
Terra dewpoint less accurate, missed small features, but usable
Absolute error

Bias

Dropsondes-VerticalTerra-tempAbs

Dropsondes-VerticalTerra-tempRelError

Pressure(mb)

AbsoluteError(degC)

RelativeError(degC)
What is data assimilation?

Data assimilation is the technique whereby observational data are combined with output from a numerical model to produce an optimal estimate of the evolving state of the system.
In variational data analysis the analysis is found by minimisation of a cost function,

\[
J_{3DV_{ar}} = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2}(H(x) - y)^T R^{-1}(H(x) - y) \\
J_{4DV_{ar}} = \frac{1}{2}(x_0 - x_b)^T B^{-1}(x_0 - x_b) + \frac{1}{2}(H(M_i(x_0)) - y_i)^T R^{-1}(H(M_i(x_0)) - y_i)
\]

with respect to the state vector \(x\). Here \(y\) is a vector containing all observations, while \(H\) is a so-called observation operator, which maps from model space to observation space (examples will be given later). \(x_b\) is the background (e.g., a recent NWP forecast, valid at the time of the data analysis). \(B\) is the error covariance matrix of the background field, \(R\) is the error covariance matrix of the observations. The matrices are of order \(N_{N WP-variables}^2\) and \(N_{obs}^2\), approximately \(10^{14}\) and \(10^8\) for a typical NWP run at DMI.

In 3DVar one operates with a single data assimilation time window centred on the time of the analysis, e.g., a 3 or 6 hour window for a NWP system making a new analysis for every 6 hours, or a 3 hour window for a 3 hour cycling system. For each observational site the system selects the datum closest in time to the analysis time, if there are other observations from the site they are rejected.

In 4DVar the observations are binned into the time-slots \(i\), and \(M_i\) is the NWP model operator which turns state vector \(x_0\) into its forecast value at time \(i\). Typical time-slots are 1 hour wide. This enables one to use observations from the same site obtained at different times, and it minimises the offset in time between the time of the observations and the valid time for the forecast fields against which the observations are compared. The drawback is that 4DVar requires far more computer-time.
3DVAR: Observation increments from different times are lumped together. A new analysis is done, and forecast is recycled.

Analogy: Drive with eyes closed: open eyes every 10 seconds and correct trajectory
4DVAR allows observation increments to be used at the times of the observations and corrects forecasts repeatedly over assimilation window, then initiates a forecast.

Computationally demanding
The systems used to quality control the observational data include:

- *Bad reporting practise check.*
- *Blacklist check.* For stations which are found to 'always' report erroneous data.
- *Gross check.* Against some limits, e.g. from climatology.
- *Background check.* Based on the deviation between the observation and the expectation based on a short term forecast.
- *Buddy check.* Checking against nearby observations.
- *Redundancy check.*

In addition observations are selected or rejected according to the time they were obtained. For a given type of observation from a given site the observations closest to the centre of the data assimilation time window is chosen. For 3DVar and most other assimilation systems (see later for definitions) this window consists of a single rather large time slot, e.g. 3 or 6 hours, while in 4DVar the window is broken down into smaller sub-windows, being typically 1 hour wide each, while the full window may be larger than in 3DVar. As a result more observations can be utilised in 4DVar.
Model computational steps:

1) Quality control
2) Hurricane vortex algorithms
3) MSU --- Cressman scheme (simpler than 3DVAR); 9-km resolution in MM5
4) NCAR --- 4DVAR; 27-km resolution in MM5
5) 6-hour cycling for both types of schemes
6) SST forcing using satellite data in progress
III. MM5 4DVAR work
4D-Var cycling experiment design for weakening period

On Domain2 with 27km horizontal resolution and 85 * 85 grids.
Vertical levels: 33 layers.

For the intensification, we did the same experiment, on domain2 with 27km horizontal resolution and 118*142 grids and 33 layers.
Cost function and gradient in 4DVAR6H1 and 4DVAR6H2 (weakening period)

Gradient for both 4DVAR6H1 and 4DVAR6H2 have good convergence, which show all data were assimilated well.

30 iterations were integrated in each 4DVAR assimilation window. Each iteration takes about 5 hours.
Optimal initial SLP of 4DVAR6H1 at 1200 UCT 2 October

4DVAR6H1

CTRL

A

B

953 hPa

1002

OBS=954 hPa
Optimal initial cross section of temperature and specific humidity (contour), along line ‘AB’

Shadow is the difference between 4DVAR6H1 and CTRL
Optimal initial condition of 4DVAR6H2 at 0000 UTC 3 Oct.
Based on the initial condition (at 0000 UTC 3 Oct.) from 4D-Var cycling experiment, 24 hour forecast is conducted on 3 nested domains. Initial condition of domain 1st come from AVN, domain 2nd Come from this, and domain 3rd is Interpolated from domain 2nd.

The grid on 3 domain is: 48*50, 85*85, 142*142
Resolution: 81, 27, 9km
Vertical: 33 layers

Forecast result analysis for weakening.
SATC: the cycling experiment including both satellite data and bogus
BDAC: the cycling experiment Only including the bogus
24-h Simulation of Radar reflectivity of SATC

24-h Simulation of Radar reflectivity of CTRL
Mixing ratio (kg/kg) on 300 hPa at 2002:10:3:0

Mixing ratio (kg/kg) on 300 hPa at 2002:10:3:3

Mixing ratio (kg/kg) on 300 hPa at 2002:10:3:9

300 mb Mixing ratio

Dry air intrusion causing some weakening?

Terra and dropsonde show dry air aloft on west side
II. SST grid generation from satellite and buoy
SST Datasets

Satellites

Aqua and Terra – NASA EOS "Level-2" 2km data in HDF format

AVHRR - NASA JPL 4km global data in HDF format
(http://podaac.jpl.nasa.gov/sst/)

Quality Control data
http://www.nodc.noaa.gov/sog/pathfinder4km/userguide.html

TRMM - TMI data (http://www.remss.com/tmi/tmi_description.html)

Buoys

http://www.ndbc.noaa.gov
AVHRR Quality Levels (0 – poorest, 7-highest)

Combination of individual quality tests to derive an overall pixel quality level. The location of the test result in the appropriate mask variable is indicated (in parenthesis) as “MXBY”, where X is 1 (mask 1) or 2 (mask 2), and Y is the bit (1-8) in the corresponding mask variable.

AVHRR (night October 2, 2002)

AVHRR_SST October 02, 2002 20Hrs

Quality levels 3-7 with land mask

AVHRR_SST October 02, 2002 20Hrs
Aqua and Terra (night October 2, 2002)
Data Preparation for Comparison
(Aqua vs AVHRR and Terra vs AVHRR)

- Interpolate Aqua/Terra SST data to a 4km gridded representation
- Filter all SST data so that SST is between 23 °C and 33 °C
- Create grid mask for all the SST data
- Create land mask for the specified spatial domain
- Filter AVHRR data to keep quality levels 3-7 only
Aqua – AVHRR Difference
(before & after removing quality levels < 3)
SST Time Series Along Lili’s Track
Datasets: Aqua, Terra, AVHRR, TRMM, Buoy

SST within 0.05 degs of Lili at 2002100200 (x=-85.70 y=23.00)
least square polynomial fit with order=4

SST within 0.05 degs of Lili at 2002100212 (x=-88.30 y=24.40)
least square polynomial fit with order=5

SST within 0.05 degs of Lili at 2002100206 (x=-87.20 y=23.60)
least square polynomial fit with order=5

SST within 0.05 degs of Lili at 2002100218 (x=-89.50 y=25.40)
least square polynomial fit with order=3

terra data points
aqua data points
avhrr data points
buoy data points
trmm data points
Gridded SST of All Data

- Sept 25, 2005 – Oct 5, 2005
- Data (Aqua, Terra, AVHRR, TRMM, Buoy)
- Grid spacing = 0.02 degrees
- Land mask
- Aqua and Terra data which are colder than the nearest 3 neighbors by less than 0.7 C (Uniformity Test)
- AVHRR data with quality levels 4 to 7
- 23 C < SST < 33 C
- Filled in data points at satellite passes by averaging nearest neighbors with distance up to 0.05 degrees
- Filled in data points between satellite passes using least square polynomial with different orders
- Goal is to generate a grid of SST data for October 1, 2, and 3.
Aqua, Terra, AVHRR, TRMM SST (before & after processing)
AVN SST lacks details and SST extremes
Smoothness due to a 7-day running mean, and an e-folding time of 90 days to dampen anomalies

Note cold water off Louisiana (caused most of Lili’s weakening?)
Note cold wake behind Lili
Note warm water northwest of Yucatan (caused Lili’s intensification?)
V. Summary
1) Hurricane Lili simulations conducted using MM5 to examine intensity swings, using 3 domains to 9-km resolution.

2) Sensitivity done using vortex bogussing scheme, T and Td profiles (dropsondes and Terra). QUIKSCAT and cloud-drift winds also used.

3) Cycled assimilation runs conducted using Cressman (MSU, not shown) and 4DVAR (NCAR). The 4DVAR takes 300 hours, and is limited to 81-km and 27-km grids. Cressman done at 9-km as well.

4) T and Td data improve track forecasts considerably, and weakening case a little.

5) It is hypothesized that the new satellite SST data will improve the Hurricane Lili intensity simulation. This work is ongoing.
VI. Commercial potential
1) Code for data cycling
2) QC algorithms
3) Cressman assimilation scheme
4) 4DVAR assimilation scheme
5) Gridded SST algorithm using multiple satellites
6) Algorithms to process NASA satellite data in hdf format