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Abstract—This paper shows that the use of appropriate
features, such as discrete wavelet transform (DWT)-based fea-
tures, can improve the least squares estimation of endmember
abundances using remotely sensed hyperspectral signals. On
average, the abundance estimation deviation is reduced by 30%
to 50% when using the DWT-based features, as compared to the
use of original hyperspectral signals or conventional principal
component analysis (PCA)-based features. Theoretical analyses
further reveal that the increase of endmember separability is a
fundamental reason leading to this improvement. In addition, the
robustness of the DWT-based features is verified experimentally.
Finally, the idea is generalized as a point that the remote sensing
community needs to investigate feature extraction (or dimension-
ality reduction) methods that are based on signal classification,
such as the DWT approach, for linear unmixing problems, rather
than using feature extraction methods that are based on signal
representation, such as the conventional PCA approach.

Index Terms—Feature extraction, hyperspectral, linear un-
mixing, remote sensing, wavelet.

I. INTRODUCTION

ONE OF THE important applications of the remote sensing
technology is target detection and classification. It is typi-

cally assumed that a pixel in a remotely sensed image represents
a distinct ground cover material and can be uniquely assigned
to a ground cover class. However, this assumption cannot be
guaranteed because of both the limited spatial resolution of re-
mote sensors and the heterogeneous nature of target surfaces.
Therefore, it becomes necessary to investigate the subpixel in-
formation when a pixel’s corresponding spectrum is composed
of a mixture of multiple materials. This leads to a research area
of spectral unmixing, which is described as a quantitative anal-
ysis procedure to recognize constituent ground cover materials
(or endmembers) and obtain their mixing proportions (or abun-
dances) from a mixed pixel.

The spectral unmixing problem has been extensively investi-
gated for the past two decades [1]–[9]. In general, mathematical
models for spectral unmixing are divided into two broad cate-
gories: linear mixture models (LMMs) and nonlinear mixture
models (NLMMs). The NLMM typically has a relatively more
accurate simulation of physical phenomena and, thus, could re-
sult in a better unmixing performance for certain applications
[8], [9]. However, the NLMM model is usually complicated and
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application dependent, which limits its extensive application. In
contrast, the LMM is simpler and more generic, and it has been
proven successful in various remote sensing applications, such
as geological applications [1], the forest studies [2], [3], and the
vegetation studies [4], [5]. Based on the LMM, many mature
techniques, such as least squares estimation (LSE) [6], [7], can
be applied to the spectral unmixing problem. In fact, the LSE has
been commonly accepted to solve the generalized linear spec-
tral unmixing problem [1]–[7].

One requirement for the abundance estimation using the LSE
method is that the number of spectral bands must be greater
than the number of endmembers. This is called the condition of
identifiability [6], [7]. To a certain extent, this condition limits
the use of multispectral data. While this limitation has less ef-
fect on the use of hyperspectral data, it is questionable that
simply using all hyperspectral bands for linear unmixing can
lead to a satisfactory result. Moreover, the use of hyperspectal
data causes another problem called the Hughes phenomena [10],
which requires more training data for a supervised classification
system to obtain accurate results. It has been realized that the
use of feature extraction (or dimensionality reduction) can avoid
the Hughes phenomena and improve the classification perfor-
mance [10]–[14]. Naturally, the question is whether the linear
unmixing performance can be improved by the use of appro-
priate features. Answering this question becomes a major con-
cern of this paper. Among various feature extraction techniques,
discrete wavelet transform (DWT)-based method has been our
research focus. Thus, we are interested in knowing whether the
feature extraction based on the DWT can improve the linear un-
mixing performance, particularly the LSE of endmember abun-
dances using hyperspectral signals.

Feature extraction approaches based on principal component
analysis (PCA) and discrete cosine transform (DCT) are also in-
vestigated for the purpose of comparison. A conventional way
to extract PCA- or DCT-based features is to use the first several
large-amplitude PCA or DCT coefficients. Experimental results
in this paper show that while this conventional feature extrac-
tion method reduces the dimensionality of hyperspectral data, it
does not help improve the abundance estimation. Note that this
conventional approach is based on techniques that provide su-
perior energy compaction. The approach works well when the
aim is signal representation, such as the case of signal compres-
sion. However, this approach may be misguided when the aim
is signal classification, which is also the aim of the spectral un-
mixing. In this case, differences between signals take on impor-
tance, and simply using the first few large-amplitude transform
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coefficients may not be adequate. For this reason, alternative
approaches to feature extraction based on PCA and DCT are in-
vestigated in this paper. For the same reason, the DWT-based
approach is proposed for the linear unmixing of hyperspectral
signals.

II. ERROR ANALYSIS OF ABUNDANCE ESTIMATION

The LSE is a mathematical technique that is used to imple-
ment an optimum estimation of parameters based on certain
known information. The estimation is regarded as optimum in
the sense of minimizing the total energy of estimation errors.
In the context of linear spectral unmixing, the LSE is imple-
mented under an assumption of the LMM to obtain an optimum
abundance estimation, given the information of mixed pixels
and constituent pure pixels. In general, the LMM is described
using a linear equation

(1)

where is a mixed-pixel spectrum;
contains true abundances of endmem-

bers; is random measurement error;
and contains endmember spectra, with

for . The superscript
stands for a vector transpose; is the number of spectral

bands; and is the number of endmembers. Using the LSE
method, an optimum estimate, , of endmember abundances
can be derived from (1)

(2)

provided that exists. It can be shown that if the end-
member spectra are linearly independent, then always
exists [15].

To quantitatively evaluate the effect of the feature extraction
on the endmember abundance estimation, a criterion of mean
square error (MSE), , is first defined

(3)

where is defined as an error of abundance es-
timate, and calculates the expectation value of a random
variable. Note that in this definition the average value of the
total error energy is utilized. Its advantage is that the MSE is no
longer scaled by the number of endmembers. Thus, it allows a
fair comparison of the MSE results from experiments with var-
ious numbers of endmembers. According to the definition of the
trace of a matrix, (3) can be further derived as,

Tr (4)

where Tr represents a matrix trace operation. Substituting (1)
and (2) into (4) and utilizing the property of the matrix trace
operation that given any two matrices, and , there exists
Tr Tr , can be further derived as

Tr (5)

where is defined as a pseudoinverse of
matrix , and is the autocorrelation matrix of

random measurement errors. Suppose that have the following
two statistical characteristics:

• Assumption 1: Random variables, , in have zero
means, for .

• Assumption 2: are uncorrelated and have different vari-
ances .

Then, (5) can be further derived as

(6)

where are the main diagonal elements in the symmetric ma-
trix .

To solve (1) for abundances, the endmember spectra have to
be determined a priori. Typically, this is accomplished by using
a library of endmember spectra. It is inevitable that there exist
differences between the library endmember spectra and the true
endmember spectra constituting mixed pixels. These differences
could be caused by many factors such as various acquisition
conditions and inaccurate library endmember spectra. However,
it is reasonable to make the following generalized assumption:

Assumption 3: Random measurement errors in LMM stem
from differences between the library endmember spectra and
the true endmember spectra constituting mixed pixels.

Then, (1) can be rewritten as

(7)

where , with ,
represents the differences defined in Assumption 3. Comparing
(1) and (7), the random measurement errors, , can be expressed
as

(8)

Furthermore, suppose that have the following three statistical
characteristics.

• Assumption 4: are linearly independent.
• Assumption 5: Random variables, , in have zero

means.
• Assumption 6: (for a fixed ) are uncorrelated, and have

different variances .
Then, in (6) can be further derived as

(9)

Substituting (9) into (6), can be further computed as

(10)

Note that is only affected by two variables, and . The
variable is uniquely determined by the endmember spectra.
The variable indicates the variances of endmember spectra,
which are referred to as the within-endmember variances in this
paper.

A special case of Assumption 2 is as follows.
Assumption 7: are uncorrelated and have the same vari-

ance .
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Then, (5) can be reduced to

Tr (11)

where denotes a simplified version of , and
is an autocorrelation matrix of endmember spectra. A special
case of Assumption 6 is as follows.

Assumption 8: (for a fixed ) are uncorrelated, and have
the same variances .

Then, (9) can be reduced to

(12)

Substituting (12) into (11), can be further derived as

Tr (13)

Note that is represented by two separated terms multiplied
by a constant factor . One term is a weighted sum of
within-endmember variances . The other term Tr is
affected by separabilities (or dissimilarities) of endmember
spectra, which are referred to as the between-endmember
variances in this paper. Experimentally it can be shown that
increasing the between-endmember variances can reduce the
value of Tr . Even though this trend is not a simple
monotonic relationship, it does provide a possibility to reduce
the value of Tr via adjusting the endmember spectra, e.g.,
via feature extraction. It has been proven possible to decrease
the within-class (or within-endmember) variances and increase
the between-class (or between-endmember) variances by using
DWT-based features [12], [13]. According to (13), therefore,
it is possible to reduce the MSE of endmember abundance
estimation.

III. FEATURE EXTRACTION FOR ABUNDANCE ESTIMATION

A. Feature Extraction Based on DWT

Wavelet transform of a signal is defined as an inner product
of the signal and wavelet bases. The fine-scale and large-scale
information of hyperspectral signals can be simultaneously in-
vestigated by projecting signals onto a set of wavelet bases with
various scales, which is referred to as a multiresolution analysis
(MRA) of signals [16]. Extracting appropriate features from the
wavelet-based MRA information provides a potential to effec-
tively discriminate hyperspectral signals in feature space. The
idea has been verified in our previous research for target de-
tection and classification problems using hyperspectral signals
[12], [13].

In practice, a fast wavelet transform (FWT) algorithm exists
for a computationally efficient implementation of the DWT. The
basic idea is to represent the mother wavelet as a set of high-
pass and lowpass filters ( and ) in a filter bank. Then the
signal is passed through the filter bank. Following the filtering,
the signal is decimated by a factor of two for a dyadic DWT.
The outputs of the high- and lowpass branches at scale are
called wavelet detail and approximation coefficients ( and

), respectively. This filtering process followed by decimation

Fig. 1. Iterative implementation of the dyadic FWT.

is referred to as single-step wavelet decomposition, as shown in
Fig. 1. The single-step wavelet decomposition can be performed
iteratively. At each iteration step, the wavelet approximation co-
efficients from the previous scale are used as the input of the
filter bank. Initially, the original signal is the input of the filter
bank.

A large variety of features could be extracted from the DWT
results, such as the energy of DWT coefficients, the DWT co-
efficients themselves, and any combination of the coefficients.
Considering the linear unmixing problem, it is important to en-
sure the LMM remains after the DWT and feature extraction.
Otherwise, the linear unmixing problem will no longer exist.
For example, it has been experimentally shown that the use of
the nonlinear wavelet energy features actually reduces the abun-
dance estimation performance [15], though this result does not
exclude the possibility that nonlinear wavelet energy features
might be helpful in the case of the NLMM. Since the DWT is a
linear transform, the DWT coefficients at specific scales could
be directly used as linear features. That is, a linear DWT feature
can be formed using the all detail coefficients or approxima-
tion coefficients , for a fixed .

These scalar subsets of DWT coefficients are the direct re-
sults from the MRA of hyperspectral signals and provide the
direct insights into both global and fine information in hyper-
spectral signals at various resolutions. As a result, the use of
these DWT scalar subset features provides a potential for im-
proving the LSE of endmember abundances. Note that the di-
mensionality of these linear wavelet features, which is equal to
the number of wavelet detail or approximation coefficients at a
specific scale, decreases with the increase of wavelet decompo-
sition scale. Theoretically, the number of elements in or

is half of the number of elements in or . Thus, the
use of these linear wavelet features is also associated with a di-
mensionality reduction of hyperspectral signals.

B. DWT-Based Linear Unmixing System

Based on the DWT-based features extraction, a linear un-
mixing system is designed for the endmember abundance es-
timation of a mixed-pixel spectrum. The system takes a mixed-
pixel spectrum as input. Assuming that the endmember spectra
are known, the system outputs an estimate of the endmember
abundances. The proposed DWT-based linear unmixing system
basically consists of two modules. One is the preprocessing
module. This module implements the DWT and the feature ex-
traction of the input mixed-pixel spectrum and the known end-
member spectra. The following module is the abundance esti-
mation, in which a constrained LSE (CLSE) technique using
a quadratic programming (QP) algorithm [17] is performed to
implement the abundance estimation. The reason for using the
CLSE is that in the practical implementation of the LSE of end-
member abundances, two constraints are applied to make the
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estimated abundances physically meaningful. One is nonnega-
tivity, i.e., physically abundances should not be negative num-
bers. The other is sum-to-one, i.e., it is assumed that the mixed
pixel completely consists of the endmembers used for abun-
dance estimation, and thus the sum of abundances is one.

The proposed system is a supervised linear unmixing system.
First, the system needs to be trained to determine DWT-based
optimal feature sets (OFS). The system training is performed on
a set of training data, which consist of the mixed-pixel spectra
with known abundances and the endmember spectra. Note that
the optimum is based on the given training data. For different
sets of training data, the optimal results may be different. How-
ever this is the essential idea of the supervised system. Second,
the OFS determined in the system training phase need to be
tested to investigate how well they can work in practical appli-
cations. A system testing procedure is performed on a set of
testing data, which is mutually exclusive from the training data
set. This avoids the bias introduced by the use of any informa-
tion from the training data. Finally, the testing results are quanti-
tatively and/or qualitatively evaluated to investigate the estima-
tion system performance. In this paper, a root mean square error
(RMSE) of the endmember abundance estimation is defined for
a quantitative evaluation. Given a set of testing data consisting
of mixed-pixel spectra, the RMSE, , of abundance estima-
tions for all the mixed-pixel spectra in the set is computed as

(14)

where represents the average error energy of the abundance
estimation corresponding to the th mixed pixel in the set. In
general, indicates an average deviation of the abundance es-
timate from the true abundance. The RMSE is also utilized as
a criterion to determine OFS during the system training phase.
That is, among the investigated DWT-based feature sets, the one
resulting in the smallest RMSE is regarded as the OFS.

C. Feature Extraction Based on PCA and DCT

The preprocessing is the first and core step of the proposed
DWT-based linear unmixing system. However, the DWT fol-
lowed by the feature extraction is not the only choice for the pre-
processing. As a comparison, two other preprocessing methods
based on the PCA and DCT are investigated. Since both the PCA
and the DCT are linear transform, their transform coefficients
are directly used as features to retain the validity of the LMM
after feature extraction.

Conventionally, the PCA- or DCT-based features are formed
using the first several large-amplitude PCA or DCT coeffi-
cients, since most of the energy (or information) of the original
signal concentrates in these coefficients. For example, given a
sequence of PCA or DCT coefficients , the first feature set
would be , the second one would be , and
so on. Since this conventional method is not appropriate for the
endmember abundance estimation as discussed in Section I,
an alternative approach, called the sliding-window method, is
proposed for selecting a subset of PCA or DCT coefficients.
This alternative approach utilizes a sliding window of size
to select coefficient subsets. That is, given a shifting stepsize

TABLE I
OFS AND THE RMSE OF ENDMEMBER ABUNDANCE ESTIMATION

, the first feature set would be , and the
second one would be , etc. For this
paper, the window sizes of and and the shifting
stepsize of are investigated.

IV. EXPERIMENTS AND RESULTS

In general, experiments of the linear unmixing can be di-
vided into two broad categories: two-endmember and multiend-
member linear unmixing. This paper takes an agriculture ap-
plication as an example. The ground-cover materials investi-
gated in the experiments include soybean (Glycine max), large
crabgrass (Digitaria sanguinalis), and soil. The soil type is the
Dundee silt loam, consisting of 26% sand, 56% silt, and 18%
clay. For the two-endmember case, the unmixing of soybean and
soil is investigated. For the multiendmember case, the unmixing
of soybean, grass and soil is investigated.

Hyperspectral reflectance spectra are measured using a
handheld spectroradiometer of Analytical Spectral Devices
(ASD). The ASD’s instrument has an ability to measure
the electromagnetic radiance (and consequently derive the
reflectance) ranging from 350–2500 nm with an average
10-nm bandwidth for each spectral band. In this paper, part
of the spectrum ranging from 354–1753 nm (1400 samples)
is investigated. A set of 60 hyperspectral reflectance spectra
from the three ground-cover materials (20 spectra for each)
were collected at the southern weed science research farm of
the U.S. Department of Agriculture’s Agricultural Research
Service near Stoneville, MS, in June, July, and August 2000.
The measurements were calibrated using a white reference
panel every few minutes to ensure the accuracy of measurement
results. For each of the three ground-cover materials, half of
the 20 spectra are utilized for the system training, and the other
half are utilized for the system testing. That is, the testing data
do not include any information from the training data.

Hyperspectral reflectance spectra from the handheld spectro-
radiometer can be regarded as pure-pixel spectra, because the
handheld measurements are made such that only one type of
material is in the sensor’s field of view. Moreover, the hand-
held measurements also reduce the atmospheric influence to the
lowest limit. Using these pure-pixel spectra, mixed-pixel spectra
with known abundances can be synthesized. For this paper, the
values of true abundance vary from 0.0 to 1.0 with an incre-
ment of 0.1. The endmember spectra are synthesized through
averaging all pure-pixel spectra in the training data set just for
simplicity.

In addition, the mixed-pixel spectra with various noise levels
are synthesized to simulate the case where the atmospheric in-



648 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 3, MARCH 2004

TABLE II
OFS AND THE RMSE OF ENDMEMBER ABUNDANCE ESTIMATION WHEN MIXED-PIXEL SPECTRA INCLUDE VARIOUS-LEVEL NOISES

fluence exists. An additive white Gaussian noise with zero mean
and variance is investigated. The SNR of the synthesized
spectra is calculated as the ratio of the average energy of original
spectra to . For this paper, SNR and are in-
vestigated to simulate the high, middle, and low noise levels. Be-
sides, to simulate a practical situation where the available end-
member spectra are not pure, mixed endmember spectra are syn-
thesized. The mixed ratios (MRs) investigated are 9 : 1 and 8 : 2
for the two-endmember case, and 9 : 0.5 : 0.5 and 8 : 1 : 1 for the
three-endmember case. For example, the MR 9 1 means
that the mixed spectrum of soybean consists of 90% and 10%
pure spectra of soybean and soil, respectively; and the mixed
spectrum of soil consists of 90% and 10% pure spectra of soil
and soybean, respectively. These two additional experiments
are designed to test the robustness of the proposed DWT-based
features.

Table I summarizes the testing RMSE results of endmember
abundance estimation. The wavelet types investigated include
Haar, Daubechies 3 (Db3), Db6, Db8, Symlet 3 (Sym3), Sym6,
Coiflet 1 (Coif1), Coif 2, Biorthogonal 1.3 (Bior1.3), Bior 2.2,
Bior 3.5, and Bior4.4 wavelets [18]. The OFS are obtained
from the system training. For the DWT-based features, notation
D7 represents the OFS is from the wavelet detail coefficients
at scale 7. For the conventional PCA- or DCT-based features
(C-PCA or C-DCT), notation {19} represents the OFS is from
the first 19 PCA or DCT coefficients. For the alternative (or
sliding window) PCA- or DCT-based features (A-PCA or
A-DCT), notation {20, 53} represents the OFS is obtained
when the window size is 20 and the window shift is 53.

The results in Table I show that for the two-endmember case
the DWT-based OFS from the Haar wavelet produces the best
RMSE result among the 12 investigated wavelets. It leads to a

improvement on the RMSE compared to the use of orig-
inal hyperspectral signals (ORG). While the OFS from C-PCA,
A-PCA, and C-DCT do not lead to the RMSE improvement, the
OFS from A-DCT does. Similar results can be observed for the
three-endmember case, where an RMSE improvement is
obtained when using the DWT-based OFS from the Haar, Db3,
and Sym3 wavelets, or using the OFS from A-DCT. The results
in Table I also show that, in general, there is not a single wavelet
performing well for all experiment cases. However, it is inter-
esting to note that the DWT-based features from the Haar and
Bior1.3 wavelets perform well in both investigated experiment
cases. This can also be observed in the following testing results
of the robustness of the DWT-based features.

TABLE III
OFS AND THE RMSE OF ENDMEMBER ABUNDANCE ESTIMATION WHEN

ENDMEMBER SPECTRA ARE NOT PURE

Table II shows the testing RMSE results of endmember abun-
dance estimation when the mixed-pixel spectra include various-
level noises, where notation A6 represents the OFS is from the
wavelet approximation coefficient at scale 6. In general, the
DWT-based features from the Haar and Bior1.3 wavelets per-
form consistently, while the DWT-based features from other in-
vestigated wavelets do not. This consistence appears in two as-
pects: 1) the Haar and Bior1.3-based features perform well in
both experiment cases; and 2) as the noise level increases, the
performance degrades, but is still satisfactory even at the high
noise level (SNR ). This consistence also shows the ro-
bustness of the DWT-based features from certain wavelets, par-
ticularly the Haar and Bior1.3 wavelets in this paper.

Table III shows the testing RMSE results of endmember
abundance estimation when the endmember spectra are not
pure. In general, the RMSE results are worse than the case
when the endmember spectra are pure. However, note that the
DWT-based features from certain wavelets, particularly Haar
and Bior1.3, consistently perform well. This further verifies the
robustness of the proposed DWT-based features.

V. CONCLUSION

This paper both experimentally and theoretically shows
that the use of appropriate features, such as DWT-based and
nontraditional DCT-based features, can improve the LSE of
endmember abundances using remotely sensed hyperspectral
signals. Experimental results show that the use of DWT-based
features reduces the abundance estimation deviation by 30%
to 50% on average, as compared to the use of original hy-
perspectral signals or conventional PCA- and DCT-based
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features. Furthermore, experimental results from two special
cases, where mixed-pixel spectra include various-level noises
and endmember spectra are not pure, verify the robustness
of the proposed DWT-based features. Theoretical analyses
reveal that a fundamental reason leading to this improvement
of endmember abundance estimation stems from the increase
of endmember separability after the use of appropriate features.
This also provides a generic criterion to design a feature
extraction technique for improving the endmember abundance
estimation. In conclusion, the remote sensing community needs
to investigate feature extraction (or dimensionality reduction)
methods that are based on signal classification, such as the
proposed DWT approach, for linear unmixing problems,
rather than using feature extraction methods that are based on
signal representation, such as the conventional PCA and DCT
approaches.

In the future, it will be interesting to investigate the mul-
tichannel DWT (MDWT) and the wavelet packet (WP) tech-
niques [19] for the feature extraction. The MDWT allows a more
complete MRA of signals, and feature sets could be obtained
from wavelet coefficients at various scales and filtering chan-
nels. The WP provides an iterative decomposition of both ap-
proximation and detail signals, and feature sets could be ob-
tained from optimal WP trees. Second, it will be interesting to
investigate the applications of the proposed DWT-based linear
unmixing system to hyperspectral images, where both spectral
and spatial information can be utilized for the feature extrac-
tion. Third, it will be interesting to investigate the weighted LSE
based on the feature extraction for the endmember abundance
estimation, because the extracted features can be weighted ac-
cording to their different contributions to the LSE. In addition,
the idea of this paper could be utilized to design a signal-classi-
fication-based compression scheme for hyperspectral imagery,
which could lead to a better compression result than the scheme
based on conventional signal representation concepts.
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