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Figure 1: Four macroLoDs (defined in section 3.1) of the 12,936 elements spx dataset, created in less than 1 second on an SGI R10000 
194MHz, 2048 MB RAM. (a) The original mesh (b) 20.06% reduced  (c) 31.20% reduced (d) 38.29% reduced. Only a portion of the mesh 
(cells that intersect a vertical cutting plane in the XY plane at a specific Z value) is rendered to show the interior elements. (Dataset 
courtesy: Peter Williams, Lawrence Livermoore National Laboratory). 
 
 

Abstract 
 
This paper introduces an algorithm for rapid progressive 
simplification of tetrahedral meshes: TetFusion. We describe how 
a simple geometry decimation operation steers a rapid and 
controlled progressive simplification of tetrahedral meshes, while 
also taking care of complex mesh-inconsistency problems. The 
algorithm features a high decimation ratio per step, and inherently 
discourages any cases of self-intersection of boundary, element-
boundary intersection at concave boundary-regions, and negative 
volume tetrahedra (flipping). We achieved rigorous reduction 
ratios of up to 98% for meshes consisting of 827,904 elements in 
less than 2 minutes, progressing through a series of level-of-
details (LoDs) of the mesh in a controlled manner. We describe 
how the approach supports a balanced re-distribution of space 
between tetrahedral elements, and explain some useful control 
parameters that make it faster and more intuitive than ‘edge 
collapse’ -based decimation methods for volumetric meshes [3, 18, 
20, 21]. Finally, we discuss how this approach can be employed 
for rapid LoD prototyping of large time-varying datasets as an aid 
to interactive visualization. 
 
CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling – surfaces and object 
representations. 
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1 INTRODUCTION 
 
Large and highly detailed volumetric models are very common 
now in research environments due to improvements in hardware 
technology and computational methods. Lately, they have found 
their place in research areas like computational vector field 
simulation, finite element analysis, medical imaging, range 
scanning, and large-scale visualization. Scientists employ a 
number of techniques like contour detection and iso-contouring, 
contour connection, iso-surface generation, voxel-based 
tessellation, etc., to create these models, mostly to simulate a 
natural or engineering phenomenon. However, since these 
techniques do not always take the requirements for efficient 
rendering into account during creation stages, the resulting models 
often turn out to be very complex in terms of the number of 
geometric primitives and their spatial relationship.  Thus, when 
these models are broken down to rendering primitives like 
triangles or quadrilaterals for the purposes of visualization, the 
large number of primitives poses a challenge to interactive 
rendering. Each of these primitives might have associated 
attributes like scalar values, vector tuples, etc., as results of 
scientific simulations [2, 11, 12], or direct visual attributes like 
color, transparency, texture, normal vector information, etc. It is 
well known that such meshes are often inefficient in terms of 
storage, access, and transmission over computer network media. 
      
     To add to these complexities, some scientific and engineering 
simulations output four- or higher-dimensional (e.g., time-
varying) datasets in the form of higher order simplicial complexes 
(polyhedral meshes), both homogeneous and heterogeneous. The 
most common examples of homogeneous polyhedral meshes are 
tetrahedral grids, because of factors like the convex shape of the 
tetrahedral elements, which makes them suitable for volume 
rendering. A typical example is an earthquake simulation dataset 
(11,800,639 vertices, 69,448,288 tetrahedra), which takes about 
3.3 gigabytes of storage space just for the basic node geometry 



 

 

 
 
 

 

and the tetrahedral connectivity information, and an additional 
141 megabytes for associated vector information for 120 time-
steps in each node. To visualize such large-scale volumetric 
meshes with time-varying attributes interactively is still an open 
research arena.    
      
     Mesh simplification has been addressed in a number of   
publications in recent years as a preprocessing step to reduce the 
geometric complexity of both polygonal and polyhedral meshes. 
Both refinement- and decimation-based strategies have been 
explored. Most of these publications extend ‘edge collapse’ -based 
decimation methods to volumetric meshes, focusing on accurate 
error evaluation metrics [3, 21], while also preventing mesh-
inconsistencies [3, 18, 21]. These methods work very well as 
metrics-guided simplification tools. However, the time-
complexities of these algorithms (please see section 2.2) 
discourage their application upon massive datasets of the order of 
one million or more elements.  
 
     This paper describes a rapid tetrahedral mesh simplification 
framework, which incorporates the constraints on mesh 
consistency, as well as it binds the geometric and attribute field 
errors; while also providing better spatial control over LoDs. 
Specifically, we employ a symmetric reduction operation: 
TetFuse, which suits the natural re-distribution of volume among 
a reduced number of elements upon every decimation step. We 
present TetFusion as a progressive simplification method to create 
macroLoDs of both static and time varying tetrahedral meshes. 
Finally, we discuss how this approach can assist in interactive 
visualization of time-varying volumetric datasets of tetrahedral 
nature.  
 
 
2 RELATED WORK 
      
We classify recent publications in the area of mesh simplification 
broadly into two categories: those based upon polygonal mesh 
reduction techniques, and those employing polyhedral mesh 
reduction techniques. 
  
 

2.1 Polygonal Mesh Simplification               
 
     The class of algorithms that simplify polygonal (2-manifold) 
surface meshes fall into this category. Most of the work discussed 
here is based on geometry reduction techniques, that eliminate one 
or more geometric primitives at a time based on specific 
constraining criteria, and then consolidate the mesh making use of 
a smaller number of primitives. The area of polygonal mesh 
simplification has seen some significant improvements lately. 
      
     Schroeder et al. [16] propose a simple multi-pass vertex 
decimation algorithm for triangular meshes. The hole resulting 
from a vertex-removal is re-triangulated with a smaller number of 
triangles. Turk [22] describes a surface re-tiling algorithm for 
simplification, where new vertices are sprayed onto the original 
mesh following topological and geometry constraints, which are 
triangulated to yield an approximation of the original mesh.  
      
     The work by Kalvin et al. [10] describes a computationally 
efficient surface approximation algorithm, which identifies quasi-

coplanar faces over the mesh in form of patches, which are re-
triangulated with a smaller number of primitives. Their greedy 
face-merging algorithm has a time complexity of O(N), N being 
the number of polygon faces in the original mesh. Further, this 
algorithm is more effective in reducing the polygon count in a 
given polygonal mesh, because of the decimation of multiple 
primitives per step. 
      
     Hugues Hoppe [8] proposes a novel progressive continuous-
resolution representation of 2-manifold triangular meshes. He 
claims that out of the three basic primitive mesh-simplification 
operations of edge collapse, edge split and edge swap, an ‘edge 
collapse’  is all that is needed for effective progressive 
simplification of meshes. The primitive operation of ‘edge 
collapse’  is presented as a completely reversible operation with 
‘ vertex split’  as its counter-operation. This work shows how a 
mesh could be represented as a basic mesh (the simplified 
version) and a series of ‘ vertex split’  records that can be applied to 
refine the basic mesh back to the original representation at full 
resolution. This representation permits geo-morphing and 
progressive transmission along with significant compression and 
support for selective refinement. 
      
     Schroeder [17] extends his previous work on triangle mesh 
decimation [16]. He proposes a new algorithm that guarantees a 
specified level of reduction, but modifies the topology while 
performing local decimation to achieve the result. He includes two 
additional primitive operations in the algorithm: vertex split, and 
vertex merge. Compression ratios as high as 200:1 can be 
achieved for some models. Finally, Garland and Heckbert [5] 
suggest a more organized way of representing error metrics in 
terms of quadrics for efficient calculation of hierarchy for view-
dependent simplification using edge collapses.   
 
 
2.2. Polyhedral Mesh Simplification       
 
Only a few attempts have been made towards polyhedral mesh 
simplification lately. Both refinement- and decimation- based 
strategies have been explored in this pursuit. For a detailed note 
on these strategies, we suggest a reference to the survey report on 
multi-resolution modeling by M. Garland [4]. This section focuses 
specifically on decimation strategies because they closely relate to 
our methods described in the next section.  
 
     Trotts et al. [20] extend polygonal geometry reduction 
techniques for tetrahedral meshes. The authors propose a 
tetrahedral collapse operation as a sequence of three edge 
collapses, while keeping the overall error (based on a unique 
spline-segment representation of each tetrahedron) below a 
tolerance range.  The paper discusses problems and difficulties 
specific to tetrahedral mesh simplification, and presents a 
framework to employ edge-collapse to decimate tetrahedra. 
Because the decimation strategy is based upon successive ‘edge 
collapses’, the authors mention the overwhelming overheads for 
maintaining an edge data structure for massive volumetric 
datasets. Further, the time complexity of the algorithm presented 
was not evident in the results or discussion [20]. 
 
     In their work on progressive tetrahedralization, Staadt and 
Gross [18] explore a specialized case of progressive simplicial 



 

 

 
 
 

 

complexes [14]: tetrahedra. Again, the most basic reduction 
operation proposed is ‘edge collapse’ . In this manner, the 
algorithm is very similar to the Progressive Meshes work by 
Hoppe [8]. Besides preserving the topological and geometric 
features as boundary, the algorithm elegantly handles previously 
undiscussed cases of ‘negative tetrahedra’  (flipping) and 
tetrahedron-boundary intersections at concave interiors. However, 
because of the expensive dynamic mesh-consistency tests for 
these special cases, the time complexity of this algorithm is 
discouraging for rapid simplification of very large datasets. For 
example, the algorithm took about 5 hours to simplify a 576,576 
elements mesh [18].  
 
     Trotts et al. [21] extend their earlier work on Tetrahedral Mesh 
Simplification [20]. Their aim is to cause minimal error when 
degenerating the mesh by binding the degeneration error to the 
deviation of a simplified scalar field from the original field. This 
way, they claim that the complex energy terms and weights in 
error evaluation can be eliminated. Further, they revert to a single 
edge collapse as the atomic decimation operation, unlike their 
previous work, where they implement a sequence of three edge 
collapses to result in one ‘Tetrahedron collapse’  operation. The 
authors reason that the latter causes complex topological problems 
and degeneration. This publication reports the simplification time 
for a range of datasets, which make it evident that a more 
rigorous, faster, and yet considerate and balanced simplification 
approach could still be explored. Their best performing algorithm 
reportedly took 2,557 minutes (about 42 hours) to simplify an 
about 0.45 million elements Blunt Fin dataset by 83.9%. 
 
     Emphasizing on accurate error evaluation techniques, Cignoni 
et al. [3] present a framework for integrated error evaluation for 
both domain and field approximations. This paper focuses on 
accuracy in calculation and prediction of error introduced in the 
domain of a tetrahedral mesh as a result of ‘edge-collapse’ -based 
decimation strategies. Local accumulation, gradient difference, 
and brute force strategies are explored to predict and evaluate 
errors while incrementally simplifying a mesh. This paper is a 
good survey of more accurate error constraint implementations, 
and offers various options that need to be tested with rigorous 
decimation strategies like TetFusion. Some error metrics are given 
in the next section.         
 
 
3 TETFUSION 
 
We present TetFuse as a new reversible atomic decimation 
operation for tetrahedral meshes. The idea is simple and intuitive: 
take all the four vertices of a tetrahedron, and fuse them onto the 
barycenter (the geometric center) of the tetrahedron. (Please see 
Figure 2 for an illustration. A detailed discussion follows in 
section 3.2.)  
 
 

3.1 Definitions 
 
Before presenting TetFuse as a new decimation operation, we 
introduce some terms that will be used frequently hereafter in the 
paper. 
 

3.1 Prey Tetrahedron: A tetrahedron that is selected 
for decimation next.  

 
3.2 Boundary Tetrahedron: A tetrahedron one or more 

of whose vertices lie on the boundary surface. All the 
tetrahedra that are non-boundary shall be called interior 
tetrahedra hereafter in this paper. 

 
3.3 Boundary Face: Triangle face of a boundary 

 tetrahedron all three of whose vertices lie on the boundary 
surface. 

 
3.4 Affected Tetrahedron: A tetrahedron, which shares exactly 

one vertex with a prey tetrahedron. This shared vertex 
stretches the affected tetrahedron towards, and onto the 
barycenter of the prey tetrahedron as a result of TetFusion. 

 
 

 
 
Figure 2: An illustration of the TetFuse operation. The (red) 
center tetrahedron is the one to collapse onto its barycenter (prey 
tetrahedron). The four other (blue) tetrahedra are the affected 
ones, which stretch in the direction of the prey tetrahedron’s 
barycenter. Note that for any affected tetrahedron, the vertex it 
shares with the prey tetrahedron moves ‘away’  from the base 
plane formed by its other three vertices (flipping discouraged). 
Further, at least eleven tetrahedra collapse as a result of TetFusion 
of an interior tetrahedron in a complete mesh. (High decimation 
per step. Please see section 3.2).      
 
3.5 Prey Vertex: The vertex of an affected tetrahedron that it 

shares with a prey tetrahedron.  
 
3.6  Base triangle: A triangle formed by the vertices of an 

affected tetrahedron, excluding the prey vertex.   
 
3.7 Deleted Tetrahedron: A tetrahedron, which shares two or 

more vertices with a prey tetrahedron, which collapses as a 
result of the collapse of the prey tetrahedron. 

 
3.8 Base Normal: For an affected tetrahedron, its base normal is 

the vector from center of its base triangle to its barycenter.    
 
3.9 Normal Stretch Ratio (SN): The ratio of lengths of the base 

normal of an affected tetrahedron before and after one 
instance of TetFusion that affects it. 

 
3.10 Stretch Factor (STRETCH_FACTOR): The maximum 

allowed value for Normal Stretch Ratio (SN), at any instance 
for an affected tetrahedron in the current representation of 
the mesh. 



 

 

 
 
 

 

3.11 MacroLoD: A level of representation of a tetrahedral mesh at 
a macro level, where none of the affected tetrahedra has 
suffered a Normal Stretch Ratio greater than 
STRETCH_FACTOR in reference of its last macroLoD 
representation.  

 
 

3.2 TetFusion: Properties and Effects 
 
We discuss the inherent properties and effects of TetFuse as a 
decimation operation for tetrahedral meshes: 
 
Symmetry: The operation is symmetric in the sense that upon each 
instance of TetFuse, the volume of all the deleted tetrahedra is 
distributed symmetrically amongst affected tetrahedra in the local 
neighborhood. 
 
Rigorous decimation: The operation performs a rigorous 
decimation. Upon each instance of TetFuse, at least 11 tetrahedra 
are collapsed for a non-boundary prey tetrahedron. This includes 
the prey tetrahedron; at least 4 tetrahedra each sharing one of the 
four faces with the prey tetrahedron; and at least 6 more tetrahedra 
each sharing exactly one of the six edges with the prey tetrahedra. 
This means a ‘higher’  lower bound on the decimation ratio per 
step than an ‘edge collapse’ . 
 
Avoids flipping: Because of symmetry of the decimation 
operation, the vertex that an affected tetrahedron shares with the 
prey tetrahedron (shared vertex) tends to move away from its base 
plane (the plane formed by the other three vertices of the affected 
tetrahedron. please see figure 2). Hence, most of the times the 
ordering of vertices in an affected tetrahedron does not get 
changed from its original configuration; and its volume is 
represented correctly. However, in some cases, flipping is 
possible. Such special cases, and a solution to deal with them are 
discussed ahead in section 3.5. 
 
Discourages self-intersections of the boundary: The operation 
gives a spatial control of the level of detail of a mesh depending 
upon the immediate neighborhood of a prey tetrahedron, and the 
STRETCH_FACTOR. It has been verified that self-intersections 
of boundaries occur only at sharp edges and corners [18], when an 
affected tetrahedron pierces through one or more of the boundary 
faces of a boundary tetrahedron. TetFusion gives control over this 
case that is inherent to the selection of a prey tetrahedron by not 
allowing any boundary tetrahedron to stretch as a result of 
collapsing the prey tetrahedron.  
 
Discourages element-boundary intersections at concave boundary 
regions: Cases of element-boundary intersection occur when an 
interior tetrahedron stretches through and over a concave 
boundary region.  Such cases cannot be avoided completely, but 
can be reduced largely by checking the affected tetrahedra in the 
mesh, i.e., by limiting the expansion of a tetrahedron (limiting the 
maximum volume of any tetrahedron at any instant), and by not 
allowing tetrahedra in the vicinity of the boundary surface to 
stretch as a result of collapsing a prey tetrahedron.   
 
Locks the aspect ratio: If the relative edge-aspect ratios of an 
affected tetrahedron go beyond a pre-specified threshold value as 
a result of the fusion of a prey tetrahedron, fusion is not allowed.   

3.3 Error Metrics  
 
The error tolerance metrics employed in our algorithm are 
discussed in this section. 
 
Preserving scalar values: We define a scalar tolerance measure, 
∆Sci, for each vertex i of a tetrahedron T.  
 

∆Sci  = | Scalari – Scalarbarycenter | / | Scalarrange | 
 

where Scalarrange = Scalarmaximum - Scalarminimum for 
whole scalar domain in the original mesh. 

 
If for each vertex i of a tetrahedron  
 

∆Sci  < SCALAR_TOLERANCE, 
 
the tetrahedron is labeled ‘scalar_FusionAllowed’. 

 
Error-binding the stretch of affected tetrahedra:  We limit the 
stretch of affected tetrahedra as a result of TetFusion of a prey 
tetrahedron. We use a pre-specified STRETCH_FACTOR as an 
upper bound on stretching of the base normal of affected 
tetrahedra. As is evident, for each non-boundary affected 
tetrahedron, exactly three edges get stretched towards the 
barycenter of the prey tetrahedron. We use the already defined 
Normal Stretch Ratio, SN, for an affected tetrahedron to see if the 
associated prey tetrahedron can be fused: 
 
For all the affected tetrahedra Ta associated with a prey 
tetrahedron Tp: 
 
If SN (Ta ) < STRETCH_ FACTOR 

 
Tp is labeled  ‘stretch_FusionAllowed’. 
 

 

3.4 Boundary Preservation 
 
The current version of TetFusion does not affect (stretch) any of 
the boundary tetrahedra Tb. This is accomplished in the following 
manner: 
 

- No boundary tetrahedron Tb is selected as a prey 
tetrahedron for TetFusion.  

- No interior tetrahedron Ti that affects a boundary 
tetrahedron is selected as a prey tetrahedron for 
TetFusion. A tetrahedron Ti that is an interior 
tetrahedron and does not affect (stretch) any boundary 
tetrahedron (Tb) is labeled ‘boundary_FusionAllowed’ .  

 
     Thus, the current version of TetFusion preserves the geometry 
and topology of the boundary surface perfectly. We believe that 
an additional simplification pass in the current algorithm to 
simplify the boundary tetrahedra, while preserving the topology 
and the sharp features, based upon one of the efficient polygonal 
mesh simplification methods [5, 8, 15, 16, 18, 20, 21] would 
further improve the reduction ratios. We plan to extend this work 
as a future step. 
 
 



 

 

 
 
 

 

3.5 Flipping: Special Cases 
 
There might still be cases of flipping, which for the case of 
TetFusion would occur only in one way: when the shared vertex 
of affected tetrahedron moves below the base plane formed by the 
other three vertices (please see Figure 3). We propose an early-
rejection test to avoid such flipping cases. The test is simple:  
 
     Given a prey tetrahedron Tp. For each affected tetrahedron Ta 
that shares exactly one vertex Vs with Tp. If Vs moves to the other 
side of the base plane PT upon one instance of TetFusion of Tp , 
the collapse of Tp is not allowed.  
 
     If, however, Vs remains on the same side of the base plane PT 
upon collapse of Tp, Tp is labeled ‘ flipping_FusionAllowed’. 
 
 

 
 
Figure 3: An illustration of a case of flipping because of 
TetFusion. The right (red) tetrahedron is the one to collapse onto 
its barycenter (prey tetrahedron). The left one (blue) is the 
affected one. As a result of collapse, Vs moves to the other side of 
the base plane PTa. Such cases are expected to be rare because of 
symmetric re-distribution of space amongst affected tetrahedra 
because of TetFusion. As a result, no two tetrahedra of 
asymmetric volume distribution can be vertex-adjacent as they are 
shown in the figure, unless they are present in the original mesh. 
For symmetrically vertex-adjacent tetrahedra that form a star 
pattern onto the shared vertex (Figure 2), the shared vertex always 
tends to remain on the same side of its respective base planes in 
reference of each of the affected tetrahedra.   
 
 
3.6 A Locally Greedy Algorithm 
 
We present TetFusion as a locally greedy algorithm that makes 
incremental passes over the whole mesh, examining each 
tetrahedron in turn for fusion under allowable error tolerance.  An 
outline of the algorithm is as follows: 
 
     Select starting values for control parameters, namely 
SCALAR_TOLERANCE, STRETCH_ FACTOR, etc. (These 
starting values of the control parameters determine the resolution 
of the first macroLoD of the mesh.)  
      
     Next, for current values of SCALAR_TOLERANCE and 
STRETCH_ FACTOR:   
 
(1) Label all tetrahedra as non-affected. Start  
       from the first tetrahedron in the  
       mesh:  

(2) Look for the first interior and non-affected  
tetrahedron, which can be labeled   
 

 scalar_FusionAllowed 
 AND 
  stretch_FusionAllowed 
  AND 
  boundary_FusionAllowed 
  AND 
  flipping_FusionAllowed 
 
(3) If found: 
                (3.1) Label it as a prey tetrahedron 

(3.2) Apply TetFuse 
(3.3) Label all affected tetrahedra 
 

(4) Start from prey tetrahedron. Repeat steps  
      (2)-(3) until no more fusions allowed.       
 
(5) Increment the macroLoD counter of the output  
      mesh by one.  

 
     Upon completion of one pass of this algorithm, the output will 
be a macroLoD where no tetrahedron will have an average stretch 
factor greater than the current STRETCH_ FACTOR, for a given 
value of SCALAR_TOLERANCE. To obtain multiple 
macroLoDs, multiple passes of the algorithm can be run 
incrementally over the last macroLoD obtained, until no more 
fusions are allowed.  
 
 

3.7 Dynamic tests 
 
It is important to note that using our approach, cases of element-
boundary intersections cannot be avoided completely, especially 
when high decimation ratios are required. Thus, elegant 
intersection tests avoiding such cases [3, 18] can be employed, 
which might increase the time-complexity of the algorithm. 
However, because of the rigorous simplification approach 
employed in TetFusion (higher reduction ratio per step), the upper 
bound on time-performance is still expected to be lower than that 
of the other ‘edge collapse’ -based methods.  

 
Figure 4: A view of two macroLoDs of the 1,499,160 elements 
blunt-finn dataset. Left: the original mesh, in wire-frame, right: 
61.16% reduced, as smooth shaded tetrahedra. Both boundary and 
scalar attributes preserved. 



 

 

 
 
 

 

4 RESULTS 
 
Table 1 summarizes the results obtained from sample runs of the 
algorithm on a number of datasets. All the execution times are for 
an SGI R10000 194MHz with 2048 MB RAM, running Irix 6x. 
 
 

5 CONCLUSION AND FUTURE WORK 
 
We presented a framework for rapid progressive simplification of 
tetrahedral meshes. The atomic decimation operation employed 
(TetFuse) is symmetric, and better suited for 3D volumetric 
meshes than ‘edge collapse’ -based methods. We described how a 
combination of a few control parameters can provide a smooth 
and controlled transition through various LoDs of a mesh at a 
macro level (macroLoDs), and discussed how symmetric re-
distribution of space and control parameters discourage the cases 
of self-intersection of boundaries, element-boundary intersections, 
and negative volume tetrahedra. Additional compression could 
still be achieved by decimation of external faces of the boundary 
tetrahedra using ‘edge collapse’ -based methods [1, 5, 8, 9, 10, 15, 
16, 17, 22], or by concise representations of the boundary surfaces 
[7, 9]. For further offline compression of the datasets, schemes 
like the ones suggested by Gumhold et al. [6], Pajarola et al. [13], 
or Szymczak et al. [19] present a nice platform for integration 
with TetFusion. 
     
     At an application level, this framework can be employed in 
rapid creation of macroLoDs for large time-varying datasets, e.g., 
earthquake simulation. One such dataset, with over 69 million 
tetrahedra, has characteristic localized scalar and vector attributes 
per time-step [2, 11, 12]. (The region of interest (ROI) varies per 
time-step.) Because of the inherent spatial control of decimation, 
TetFusion can be used to rapidly create macroLoDs with rigorous 
decimation in regions outside the ROI. These macroLoDs (one per 
time-step) with high decimation ratios can be suitable for 
interactive temporal visualization. (The human visual system is 
understood to be less sensitive to details in a dynamic scene, with 
moving objects, than in a scene with static objects.) A 
considerable frame refresh rate (10-13 frames per second) can 
thus provide sufficient detail to visualize the temporal behavior of 
such a model. In future work, we plan to employ better error-

evaluation techniques [3, 21], and explore the trade-off between 
time complexity of TetFusion and the accuracy of domain and 
field errors introduced as a result of tetrahedral fusion.  
 

 
Figure 5: Volume rendered images of two macroLoDs of the 
827,904 elements spx dataset. Left: the original mesh, right: 
69.88% reduced. Both boundary and scalar attributes were 
preserved. Note that the images are visually indistinguishable. 
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Figure 6: Another ‘ cut open’  view of four macroLoDs (defined in section 3.1) of the 103,488 elements tetrahedral mesh of the spx dataset, 
created in 14.31 seconds on an SGI R10000 194MHz with 2048 MB RAM. (a) The original mesh (b) 43.19% reduced  (c) 62.32% reduced 
(d) 75.5% reduced. Only a portion of the dataset is rendered to show the interior elements. (Dataset courtesy: Peter Williams, Lawrence 
Livermoore National Laboratory).  
                        



 

 

 
 
 

 

 
S.

No. 
Number of tetrahedra 

(% of boundary nodes) 
Boundary 
Preserved 

Scalar attribute preserved 
(SCALAR_TOLERANCE) 

STRETCH_FACTOR % Reduction  
(Tetrahedra) 

CPU 
  User Time (Sec.) 

1. 12,936 
(6.86%) 

YES YES 
(0.025) 

5.0 41.14% 0.51 

2. 78,600 
(32.92%) 

YES NO 5.0 50.81% 8.0 

3. 100,000 
(9.3%) 

YES NO 5.0 50.77% 15.0 

4. 103,488 
(14.79%) 

YES NO 
 

5.5 78.48% 7.26 

5. 103,488 
(14.79%) 

YES YES 
(0.025) 

5.5 62.69% 5.85 

6. 187,395 
(16.5%) 

YES 
 

YES 
(0.025) 

5.0 49.39% 15.48 

7. 300,000 
(9.3%) 

YES NO 5.0 70.39% 47.0 

8. 827,904 
(13.26%) 

YES YES 
(0.05) 

5.5 83.44% 58.41 

9. 827,904 
(0%) 

NO NO 5.5 98.93% 91.32 

10. 1,005,675 
(9.8%) 

YES YES 
              (0.05)  

6.0 42.39% 85.47 

11. 1,499,160 
(9.79%) 

YES YES 
(0.5) 

5.0 63.79% 187.23 

Table 1: Summary of results from an implementation of TetFusion run on a number of datasets. All the macroLoDs have been created on 
an SGI R10000 194MHz with 2048 MB RAM. Dataset nos. 2, 3, and 7 are subsets of a 69,448,288 elements earthquake simulation model 
[2, 11, 12]. Spx: dataset nos. 1, 4, 5, 8 and 9 (courtesy Peter Williams, Lawrence Livermoore National Laboratory; and Ricardo Farias, 
Mississippi State University). Delta-wing: dataset no. 10 (courtesy NASA Ames Research Center). Blunt finn: dataset nos. 6 and 11. 
 

 

 

 
 (a) The original mesh                (b) 44.7 % reduced                            (c) 57.9% reduced       
Figure 7: Three macroLoDs of the 1,499,160 elements blunt-finn dataset. The rows show progressive simplification as a result of 
TetFusion. Each column represents one macroLoD of the mesh. Row 1: A cutting plane slicing through the dataset, displaying the 
primitives of intersection as wireframe. Row 2: Cutting plane displaying the primitives of intersection as filled polygons. Row 3: Volume 
rendered images of the three macroLoDs of the dataset.  
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