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Automated Detection of Subpixel Hyperspectral Targets
With Adaptive Multichannel Discrete Wavelet Transform

Lori Mann Bruce, Jiang Li, and Yan Huang

Abstract—This paper introduces the use of adaptive multichannel dis-
crete wavelet transforms (AMDWTs), allowing for a customized design of
optimum mother wavelets, for the detection of a constituent absorption
band within a hyperspectral curve. Even when the target’s amplitude is
only 3% of the background signal’s amplitude, the AMDWT approach pro-
duces target detection rates of 90%.

I. INTRODUCTION

With the use of hyperspectral imagery, the ability to reliably de-
tect subpixel targets through remote sensing is becoming a reality. A
major step toward this goal is the ability to detect the constituent ab-
sorption bands that comprise a hyperspectral reflectance curve. Var-
ious methods for analyzing hyperspectral curves are being developed
and a number of these methods are based on multiresolutional deriva-
tive analysis [1]–[4]. More recently, the methods using the continuous
wavelet transform (CWT) and the discrete wavelet transform (DWT)
were investigated as a means of systematically analyzing hyperspectral
curves via windows of varying width [5]. By appropriately selecting
the mother wavelet, the method could be used to efficiently imple-
ment the smoothing and derivative operations in a multiresolutional
manner. The wavelet transforms were utilized as a preprocessing tool
for feature extraction in an automated hyperspectral target detection
system, where the target was a low-amplitude constituent absorption
band. Derivative-of-Gaussian mother wavelets were utilized with the
CWT and a variety of standard, commonly used mother wavelets were
investigated for the DWT. It was shown that the CWT method outper-
formed the DWT method in terms of target detection accuracy, but the
DWT method was computationally more efficient. Also, the mother
wavelets investigated for the DWT system were not optimized; they
were simply drawn from a pool of commonly used mother wavelets.
One cannot say that the DWT results were optimum since there are
infinitely many mother wavelets from which to choose. Thus, for this
application, as well as many others, there is a great need for DWT im-
plementations where the mother wavelet is optimized for the specific
task at hand.

This paper investigates the use of an adaptive multichannel discrete
wavelet transform (AMDWT) for the detection of the same subpixel
targets as reported in [5]. For a wavelet transform to be “adaptive,” ei-
ther: 1) the mother wavelet is varied in order to minimize an error crite-
rion or 2) the basis formed from a preselected mother wavelet, such as
which resolutions or scales are utilized, is varied in order to minimize
an error criterion. In this study, case 1) is investigated. Similar to the
previous work in [5], the AMDWT is used as a means of feature ex-
traction and traditional statistical methods are used to classify the input
data as “target present” or “no target present.” The methods are tested
on a database of Hyperspectral Digital Image Collection Experiment
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Fig. 1. AMDWT-based automated detection system block diagram.

(HYDICE) curves. The results from using the AMDWT are compared
to those of the CWT- and DWT-based methods.

II. M ETHODOLOGIES

An adaptive multichannel wavelet-based automated detection
system is designed and tested for detecting low-amplitude constituent
bands in hyperspectral curves. The adaptive system customizes a
set of parameterized multichannel wavelet filters (MWFs) through
minimizing a user-defined error criterion during the system training
phase. The results are a set of optimum MWFs, based on the training
data. During the system testing phase, the optimum MWF is used
to implement the multichannel discrete wavelet transform (MDWT)
of the hyperspectral curves and wavelet coefficient scalar energy
features are extracted. The performance of the wavelet-based features
is evaluated via the maximum-likelihood classification accuracy. A
block diagram of the overall system is shown in Fig. 1. The system is
trained and tested using a jackknife procedure on a database of 1000
HYDICE signals where half contain a subpixel target, or additive
Gaussian constituent band. The amplitude, or abundance, of the target
is varied between 1% and 10% of the amplitude of the background
hyperspectral curve. The databases of HYDICE signals are reported
in more detail in [5].

A. MWF Construction and MDWT

The first step of the adaptive system is to construct parameterized
mother wavelets (or equivalently wavelet filter banks [6], [7]).
Fundamental theories and methods of designingM -channel wavelet
filters, with arbitraryM , have been investigated in [8]–[11]. The
applications ofM -channel wavelet filters to feature extraction and
classification problems have been reported in [12] and [13]. For
this study, the methods presented in [11] and [13] are utilized for
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Fig. 2. Filter tree implementation of MDWT.

constructing MWF. The basic idea behind the construction of MWF is
a process of shift product and factorization of wavelet matrices. The
result is an orthogonal MWF matrix, which is a function of a set of
parameter vectors,~ui and~v. The first row of an MWF matrix corre-
sponds to a low-pass filter impulse responseh(n) and the remaining
rows of the MWF matrix correspond to a series of band-pass and
high-pass filters,gj(n), respectively, wheren = 0; 1; . . . ; N � 1 and
j = 1; 2; . . . ;M � 1. The variablesM andN represent the number
of wavelet filter channels and the filter length, respectively. Therefore,
given a set of parameter vectors~ui and~v, a set ofM -channel wavelet
filter banks,h(n) andgj(n), are determined. In general, there exists
a relationship among the number of~ui parametersq and variablesM
andN , such thatN = M � (q + 1).

With theM -channel filter bankh(n) andgj(n), anM -channel dis-
crete wavelet transform can be implemented in a recursive manner as
shown in Fig. 2. At each decomposition level (or scale), the filters are
followed by a decimation with factorM . As a result, a set of wavelet
detail coefficientsds;j and wavelet approximation coefficientsas are
obtained. Note that when the levels = 0, as = a0 represents the orig-
inal signal. Mathematically, these operations can be described as [13]

as+1(k) =

N�1

n=0

h(n) � as(M � k + n)

ds+1;j(k) =

N�1

n=0

gj(n) � as(M � k + n): (1)

Notice that, when the number of channels is two,M = 2, the recursive
operations reduce to the case of the standard dyadic DWT. For back-
ground information on wavelets and filter banks, the reader is referred
to [7], [9], and [14].

B. Feature Extraction and Reduction

In this study, the wavelet transform coefficient scalar energy is com-
puted and utilized as classification features. The orthogonal wavelet
transform can be viewed as an energy partitioning process of the orig-
inal digital signal [15]. The energy of the wavelet coefficients can be
utilized as a feature that indicates how the original signal’s energy is
partitioned according to scale or resolution. For this study, we form a
feature vector,~f , based on the calculation of MDWT coefficient scalar
energies

~f = [E (aL) ; E (ds;j)]
T (2)

whereE(�) is an operator of energy calculation, the superscriptT rep-
resents the vector transpose,aL are the MDWT approximation coeffi-
cients at the final decomposition level andds;j are the MDWT detail
coefficients at each decomposition level (s = 1; 2; . . . ; L) and in each
filter channel (j = 1; 2; . . . ;M � 1).

For hyperspectral data analysis, the feature extraction process is also
a dimensionality reduction process. The HYDICE signatures used in

this study consist of 210 spectral bands, i.e., the HYDICE data have a
dimensionality of 210. After the MDWT-based feature extraction, ac-
cording to (2), the dimensionality is reduced to1 + L � (M � 1). For
example, the dimensionality is reduced to 10 when using a four-channel
MWF (M = 4) and a three-level decomposition (L = 3). The dimen-
sionality of the feature vector could be reduced further using Fisher’s
linear discriminant analysis (LDA) method. The output from the LDA
is an optimal linear weight matrix,W , in the sense of maximizing the
interclass variance and minimizing the intraclass variance [16]. The
weight matrix has a size ofD� (C� 1), whereD = 1+L � (M � 1)
is the dimensionality of the feature vector~f andC is the number of
classes. With the weight matrix, the reduced feature vector~fr is com-
puted as an optimal linear combination of elements in the original fea-
ture vector~f as

~fr = W
T
�
~f: (3)

Note that the reduced feature vector~fr has a size of(C�1)�1. For a
two-class problem, the feature vector can be reduced to a scalar value.

For the CWT and the DWT cases in [5], the features were extracted
from a region of interest (ROI) within the hyperspectral curve, as well
as from all of the hyperspectral curve. The “all” case represented the
scenario where the system had noa priori information as to poten-
tial spectral location of the target’s absorption band. For this study of
adaptive wavelet transforms, only the “all” case was investigated, since
it represented the most difficult scenario and was the case for which
the CWT and the DWT methods resulted in the lowest target detection
accuracies.

C. System Training and Testing

Based on the reduced MDWT features, an optimization operation or
classification operation is performed when the system is being trained
or tested, respectively. When conducting the optimization operation,
the modified linear discriminant error measure (MLDEM) is utilized
as an optimization criterion. The authors designed this measure based
on the Fisher’s linear discriminant analysis method. The MLDEM is
defined as a ratio

MLDEM =
�21 + �22

(�1 � �2)
2

(4)

where�1, �21 , �2, and�22 are the means and variances of Class 1 and
Class 2, respectively. The optimization operation is to minimize the
value of the MLDEM, which implies maximizing the interclass vari-
ance and minimizing the intraclass variance. During each optimization
iteration, the MLDEM is computed and minimized and at the same
time the parameter vectors constructing the MWF,~ui and~v, are up-
dated. The adaptive iteration process continues until the MLDEM is
minimized. Various standard optimization methods [17] exist for im-
plementing the minimization. In this study, a quasi-Newton algorithm
incorporated by a mixed quadratic and cubic line search algorithm is
used for MLDEM minimization. Note that this is a nonlinear optimiza-
tion problem, thus it is possible to result in a local minimum, rather
than a global minimum. This problem could be solved in an experi-
mental manner. One way is to test several sets of initial parameters to
try to obtain a solution that is reasonably close to the global minimum.
Another way is to initially set a satisfactory criterion for the system per-
formance, e.g., if the target detection accuracy (or the improvement of
the detection accuracy) is satisfactory, the solution is regarded as op-
timal. The second method is a more application-dependent approach
and is used for this study.

The optimization process results in a set of optimum parameter vec-
tors,~ui and~v, as well as the optimum weight matrix,W , for feature re-
duction. Utilizing~ui and~v, a set of optimum MWF can be constructed,
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Fig. 3. Filter impulse response and amplitude of the frequency response of
optimalmwf � 4� 16 for DM1, 3% positive target amplitude.

and, usingW , the system can be used for classification. The perfor-
mance of the AMDWT-based automated detection system is evaluated
using maximum likelihood classification accuracies, which is the same
method as reported in [5]. Thus, one can directly compare the system
performance of using the CWT, DWT, and AMDWT features.

III. RESULTS AND DISCUSSION

The HYDICE data matrices (DMs) utilized in this study are the same
as those reported in [5]. They include the following: DM1: positive am-
plitude target with width� =

p
7 centered at�0 = 750nm; DM2: neg-

ative amplitude target with width� =
p
7 centered at�0 = 750 nm;

DM3: negative amplitude target with varying width centered at�0 =

750 nm. The signal-to-noise ratios (SNRs) for these databases range
from �51 dB to�98 dB. This shows how insignificant the target is
compared to the background clutter of the hyperspectral curve. Six dif-
ferent MWFs are adaptively constructed. The name of the MWF is de-
noted asmwf � M � N , whereM is the number of wavelet filter
channels andN is the wavelet filter length. As an example, Fig. 3 shows
both the impulse response and the amplitude of the frequency response
ofmwf � 4� 16 for the DM1 with a positive 3% amplitude subpixel
target.

The maximum likelihood classification accuracies resulting from the
AMDWT are summarized in Table I. For the purpose of comparing
system classification performance, pertinent results from the CWT and
DWT [5] are also included in Table I. These results are: 1) the best result
form the CWT using the seventh Gaussian-derivative mother wavelet
(Gauss-7); 2) one of the best results from the DWT using Haar mother
wavelet; and 3) results from the DWT using Daubechies-3 (Daub-3)
and Daubechies-5 (Daub-5) mother wavelets, which have the same
filter length asmwf � 2� 6 andmwf � 2� 10, respectively.

General observation indicates that using the AMDWT leads to a siz-
able improvement in classification accuracy as compared to the DWT
and CWT. In general, at least a 10% increase in classification accuracy
can be gained from using the AMDWT, regardless of the target’s am-
plitude or variance. This is especially true when the MWFs have more
than two channels, i.e., the multichannel wavelet analysis plays a key
role in improving the target detection performance. This is reasonable
and understandable since the MDWT conducts multiresolution anal-
ysis in a more refined and comprehensive way.

Moreover, the adaptation also plays a key role in improving the
system performance. This is verified by comparing results from the
two-channel MDWT and standard DWT when using the same order
filters, e.g.,mwf � 2 � 6 versus Daub-3 andmwf � 2 � 10 versus
Daub-5. Taking the DM1 with a positive 3% amplitude subpixel target
as an example, an improvement of 12%–30% in the classification

TABLE I
MAXIMUM LIKELIHOOD CLASSIFICATION ACCURACY IN PERCENTAGE

USING AMDWT, DWT, AND CWT. DM1: POSITIVE AMPLITUDE TARGET

WITH � =
p
7 AND � = 750 nm; DM2: NEGATIVE AMPLITUDE TARGET

WITH � =
p
7 AND � = 750 nm; DM3: NEGATIVE AMPLITUDE TARGET

WITH VARYING WIDTH AND � = 750 nm

accuracy is obtained. Similar observations can be made for various
amplitude and variance subpixel targets in DM1, DM2, and DM3.

The classification results vary among the six different MWF investi-
gated. General observation shows that the number of channels and the
length of the filters are proportional to the classification accuracies. For
example,mwf � 4 � 16 generally outperformsmwf � 3 � 15 and
mwf�3�9 andmwf�3�15 generally outperformsmwf�2�10

andmwf � 2 � 6. This trend could be resulting from the fact that
more channels and longer filters provide a larger freedom, or larger
dimensionality of search space, to adaptively adjust and optimize the
MWF. Recall that the training and testing data are jackknifed such that
they are mutually exclusive. Also, the data is drawn from a highly vari-
able HYDICE scene containing a variety of natural and manmade ob-
jects. This was done to safeguard against overtraining in the adaptation
process.

IV. CONCLUSION

In this paper, the authors extend the use of wavelet transforms
for hyperspectral feature extraction and subpixel target detection
to include adaptive wavelet transforms, specifically the adaptive
multichannel discrete wavelet transform (AMDWT). The AMDWT
consistently outperformed the DWT and the CWT methods used
in [5], increasing the target detection accuracies by at least 10%
regardless of target amplitude or width. For the cases where the target
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amplitude was only 3%, as compared to the background hyperspectral
curve, the AMDWT produced classification accuracies> 90%. This
result is particularly impressive when considering the hyperspectral
curve’s SNR is� �75 dB.

The increased accuracy of the target detection system does not come
without a price, however. The training of the system, as compared
to the DWT and CWT methods, is much more computationally ex-
pensive. The process of adaptively constructing the mother wavelet is
time-consuming. However, once the optimum mother wavelet is de-
signed, the implementation of the AMDWT is very similar to the DWT
and the computational expense is comparable. For example, assume
the AMDWT system were to be used for the detection of a particular
target. With the use of training data, the AMDWT system could be used
to construct the optimum mother wavelet beforehand. Then during the
actual usage of the system, the MDWT could be implemented with a
subband filter bank either in software or specialized hardware, so the
additional computations required for the AMDWT could be completed
offline beforehand. With this in mind, the AMDWT method is consid-
ered to be superior to the CWT and the DWT methods due to its much
increased target detection accuracies.
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A Novel Multifractal Estimation Method and Its
Application to Remote Image Segmentation

G. Du and T. S. Yeo

Abstract—Based on the gliding-box and relative differential
box-counting algorithms, a novel method that estimates accurately
the multifractal exponents, a distinct characteristics of gray-scale digital
images, is proposed. Four natural texture images are used to test the per-
formance of the novel multifractal measure. Comparisons with published
methods show that the proposed method can efficiently describe texture
images and can provide accurate classification results.

Index Terms—Image segmentation, multispectral estimation, synthetic
aperture radar.

I. INTRODUCTION

Multifractal analysis has gain popularity in image analysis during the
recent years. The multifractal parameters of physical phenomena have
been shown [1] to be distinct with respect to the texture contents of
the images, and yet they are consistent across sensing platforms. Mul-
tifractal analysis has also been known to produce fairly accurate clas-
sification results even in cases where the image does not possess ideal
fractal properties. In remote sensing, multifractal analysis has been suc-
cessfully applied in several applications such as the analysis and clas-
sification of land [2] and sea-ice [3].

Several algorithms have been proposed for the computation of multi-
fractal parameters. One of the commonly used methods was presented
by Chaudhuri and Sarkar [4]. The method was based on the differential
box-counting (DBC) algorithm and has been shown to produce fairly
good results. In this paper, we propose a novel modification to [4], re-
sulting in better accuracy and efficiency.

II. M ULTIFRACTAL MEASURE

The classical multifractal estimation method proposed by Chaudhuri
and Sarkar [4] can be described as follows. Consider an image of size
M � M which has been scaled down to sizes � s, wheres ranges
between 2 toM=2. The image space is partitioned into multiple grids,
each of sizes � s. On each grid there is a column of boxes of size
s� s� s. Let the maximum and minimum pixel values in the(i; j)th
grid fall in box numberv andu, respectively. The relative box index
nr , a descretized version of the relative pixel strength, can be defined
as

nr(i; j) = v � u+ 1: (1)

Taking contribution from all grids (i.e., counting all boxes), we have

Nr =
i; j

nr(i; j): (2)
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