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Abstract 

 

Different modalities in biomedical imaging, like CT, MRI and PET scanners, provide detailed cross-

sectional views of the human anatomy. The imagery obtained from these scanning devices are typically 

large-scale data sets whose sizes vary from several hundred megabytes to about one hundred gigabytes, 

making them impossible to be stored on a regular local hard drive. San Diego Supercomputer Center 

(SDSC) maintains a High-Performance Storage System (HPSS) where these large-scale data sets can be 

stored. Members of the National Partnership for Advanced Computational Infrastructure (NPACI) have 

implemented a Scalable Visualization Toolkit (Vistools), which is used to access the data sets stored on 

HPSS and also to develop different applications on top of the toolkit. 2-D cross-sectional images are 

extracted from the data sets stored on HPSS using Vistools, and these 2-D cross-sections are then 

transformed into smaller hierarchical representations using a wavelet transformation. This makes it easier 

to transmit them over the network and allows for progressive image refinement. The transmitted 2-D 

cross-sections are then transformed and reconstructed into a 3-D volume. The 3-D reconstruction has 

been implemented using texture-mapping functions of Java3D. In a typical application, the user might be 

interested in a certain section of the data set (region of interest). For example, when a physician wants to 

examine a tumor in the brain, he or she needs to visualize the section of the tumor in the brain at a high 

resolution. For this we need to extract sub-volumes of the data set. These sub-volumes are then 

transmitted and rendered at a higher resolution than the rest of the data set. 

 

1. Introduction 

 

Medical imaging devices, such as CT scanner, MRI scanner and PET scanner, provide detailed image 

information of various parts of a human or animal body. Those kinds of scanners are used in veterianry 

and human biology and medicine. They provide comprehensive 2D cross-sectional images of a selected 

region of a body, which helps in investigating  a pathologic condition or a disease. CT scans are a well-

established medical imaging technique for studying stroke, trauma and tumor conditions. The image 

series obtained from these scanning devices are large-scale data sets whose sizes range from a few 



megabytes to several gigabytes (7MB – 100GB). The sizes of these data sets make them difficult to be 

stored on a local hard drive and to be transmitted over currently existing networks. SDSC maintains a 

large-scale data repository where these data sets can be stored. Access to these data sets is provided to 

biologists and other researchers all over the world in closed or open user groups, and the data are 

transmitted in small, compressed portions upon request by a client application. The transformation of 

large volumes into compact sub-volume representations enables faster transmission over the network. The 

details on accessing these data sets and transforming them into a more compact representation using a 

Haar wavelet transformation are discussed below and in the following sections. 

The Scalable Visualization Toolkits (Vistools), an NPACI initiative, primarily developed at 

SDSC, the Scripps Institute (La Jolla, CA), UC Davis, U Texas, and Mississippi State University, support 

a variety of different file formats to store all kinds of structured and unstructured meshes. The file format 

used for biomedical 3-D image data is called the vol file format, which supports regular three-dimensional 

grids. The vol format can be encoded into three different formats, namely vols, volb, and volc. If a data set 

contains 8-bit scalar values, it is written as a vols file. If a data set contains RGB or RGBA values, it is 

written as in volb format (32 bits). Each byte represents a color channel. If no alpha channel is present, the 

alpha value is zero. 64-bit image data is written in volc format. A volc file stores element data as 64-bit 

RGB-alpha-beta values. The color component values are truncated to 10 bits for red, 12 bits for green and 

10 bits for blue. The alpha and beta components are truncated to 16 bits each. The vol file format also 

supports a chunked layout scheme in which data is arranged in smaller subsets, which allow for sub-

volumes to be extracted. In a non-chunked layout, the data is typically arranged in slices (x/y planes), 

which makes it difficult and inefficient to access data from adjacent slices, i.e., along the z axis. In a 

chunked layout, data are stored as sub-volumes, which makes it easier to access voxels in adjacent slices. 

This is of particular importance when rendering a region of interest at a higher resolution than the rest of 

the image, which is only provided as low-resolution context information. A designated sub-volume, 

which comprises the entire data set, is stored at a lower resolution to provide this context information. 

On the client side, the wavelet-transformed data are transformed back from local frequency 

domains into a spatial domain. Once the selected area of the original volume is reconstructed for a given 

level of detail, it is rendered as a 3-D volume using texture-mapping techniques in Java3D.  

 

2. Background 

 

Volume rendering of biomedical data sets in 3-D is important for physicians and biologists to get a 

detailed view of the anatomy of a human or animal subject. Rendering algorithms based on raytracing 

have been implemented [9,13], which turned out to be very time-consuming for large-scale data sets. 



More advanced implementations are based on some of the hardware-acceleration features of OpenGL [8], 

Open Inventor and Java [1,10]. Hardware-based rendering has been implemented to provide interactive 

real-time rendering capability for volumes under certain restrictions (limited volume size, limited 

flexibility in terms of rendering algorithms and illumination) [14]. Very few approaches deal with volume 

rendering for web-based applications. Previous work includes slicing of large volumetric data sets done 

locally on the client side [4] or remotely on the server side [11]. Several methods have been developed for 

lossy compression of gray level data [13]. Other authors suggest to download an entire data set, which is 

not always feasible with limited storage capacity on the client side. Finally, server-based can be 

inefficient if large images need to be transmitted to the client side, making interactive rendering and 

higher frame rates (3-10 frames per second) impossible [16]. In order to overcome these difficulties, we 

have implemented a client-based rendering scheme in Java3d, which is platform-independent and 

scalable. This means that data sets in the order of 100 GB can be rendered on the client side at reasonable 

resolution and with interactive frame rates from various perspectives. Data compression and efficient data 

storage techniques on the server side are essential for this algorithm. 

Various image compression schemes like JPEG, Multiwavelet image compression techniques 

[12], and Multi-resolution Trees [17] have been discussed in the past. In most of these cases, the 

compression has only been discussed in two dimensions. In our method we are using a 3-D Haar wavelet 

transformation, which enables interactive volume rendering through efficient decomposition and rapid 

reconstruction of 3-D image data. Wavelets are local in both frequency and spatial domains. Therefore,  

they preserve features, such as defined gradients, abrupt discontinuities and sharp spikes, as they occur in 

high-resolution image data, in a more compact way than in uncrompressed format, and still achieve a 

reasonable approximation [2]. The data is stored as a sum of low-resolution image data and a set of detail 

coefficients. These detail coefficients usually have very small values and can be quantized or neglected in 

order to achieve better compression rates. The quantization thresholds determines the amount of detail 

lost in the image. If the data is not quantized, lossless compression can be achieved, by still providing 

better compression rates due to the smaller values of the detail coefficients. A wavelet-transformed 

uncompressed volume occupies the same amount of space than a non-transformed volume. It provides a 

hierarchy of several levels of detail, if the transformation is applied repeatedly. These features make 

wavelets an excellent compression and efficient data storage tool. Wavelets have also been proved 

advantageous in terms of computational complexity and image quality of compressed images [11]. 

Our approach deals with extracting and transforming cross-sections and sub-volumes on the 

server side, transmitting the required sub-volume in high resolution and the rest of the data as contextual 

information, and reconstructing the 3-D volume on the client side using texture mapping [3,4] in Java3D. 



We have used Java as our programming language to implement our visualization system since it is 

platform independent and most suitable for web-based applications.  

 

3. Implementation 

 

To make use of enhanced storage capabilities, the data sets are stored on a High-Performance Storage 

System (HPSS), which allows the user to define closed and open user groups, and multiple copies or 

versions of a file at different locations. The actual storage pattern is transparent to the user. We are 

accessing the data from HPSS using NPACI’s Scalable Visualization Toolkits. The data are retrieved from 

the repository as subsets of 2-D cross-sections, which are then assembled into 3-D sub-volumes. These 

sub-volumes are then transformed using the Haar wavelet transform and compressed into a more compact 

representation. These data packets are then transmitted over the network.  
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Figure 1: Visualization System 
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On the client side, the transformed wavelet packets are uncompressed and then reconstructed into a 3-D 

volume using texture-mapping techniques in Java 3D. Textured planes are created in three perpendicular 

directions in order to obtain a three-dimensional image, which can be viewed from different directions. 

The number of planes is determined by the performance of the client application. Currently, 

approximately 50 planes can be rendered in real-time, providing sufficient image quality and rendering 

speed. 

For a detailed study of a region of interest, for instance a particular section of the brain, sub-

volumes can be extracted from the data set. For example, a user might only be interested in a tumor or 

some other pathological tissue. Then the region can be marked in the Java application using a mouse-

driven 3-D cursor, a request is sent to the server, and the server extracts the respecitive set of sub-volumes 

from the data repository and transmits to the client. These sub-volumes are typically rendered at a higher 

resolution than the rest of the data set. Our 3-D wavelet compression schemes allows for different levels 

of detail and progressive image refinement. 

 

4. Data extraction, compression, and rendering 

 

4.1 Extraction of 2-D cross-sections from volume data sets 

 

NPACI’s Scalable Visualization Toolkits (Vistools) are available in Java and C++ versions. We have used 

the Java version to extract a series of 2-D cross-sections from a CT scan of a human brain (ctbrain.vols). 

The data set consists of 512 x 512 x 231 elements. The size of the file was 60,555,264 bytes (approx. 57.8 

GB). 2-D cross-sections have been extracted in x, y and z directions. The Scalable Visualization Toolkits 

provide a method that reads a range of elements from a given data set and returns their values in the host’s 

byte order and word size. This method implements a decoder, which reads the data from a file and 

decodes its specific format. The decoding is transparent to the user. VisTools automatically recognizes the 

file type by identifying the magic number at the beginning of a file (vols, volb or volc). The resulting byte 

stream is stored in a buffer. 

  

4.2 Extraction of sub-volumes from volume data sets 

 

It turned out that a slice-based storage layout is not the best way for extracting sub-volumes. In most 

cases, the user might not be interested in the whole data set, or might not need to see the entire data set at 

maximum resolution. For example, a surgeon might be interested in viewing a brain tumor and the 

surrounding tissue in greater detail, while the location and context information can be rendered at a lower 



level of detail. To handle such situations, sub-volumes of the data set need to be extracted [6,7]. Vistools 

also provides a method for a chunked storage layout, which can be used to extract sub-volumes from a 

data set. This method computes and returns a one-dimensional memory index corresponding to the given 

n-dimensional grid coordinates in the data set, which is stored in a chunked format. These one-

dimensional memory indices are used to read from the file using the same method that was used to extract 

a cross-section of the data set. We used a file that has been stored in chunked format to extract a series of 

adjacent sub-volumes. Our sample file is again a CT scan of a human brain (ctbrain_c32.vols). 

 

                      
Figure 2: Different cross-sections of a sub-volume 

           

4.3 Haar Wavelet Transformation  

 

After the cross-sections or sub-volumes have been extracted, the data are transformed using the Haar 

wavelet transformation. The Haar wavelet transformation has a local frequency domain and can be 

computed effectively using integer arithmetic. The procedure can be easily implemented. To provide a 

better idea about the implementation of a Haar wavelet transformation, we illustrate the algorithm with a 

simple example. 

Assume we have a one-dimensional image with an eight pixel resolution, where the pixels have 

the following values [5]: 

 

7        5        3        9        3        7        5        3 

 

By applying the Haar wavelet transformation we can represent this image in terms of a low-resolution 

image and a set of detail coefficients. The transformed data coefficients are obtained by averaging two 

consecutive pixels, while the detail coefficients represent the difference between the average and one of 

the two consecutive pixels. So, the above image will be represented as follows after the first cycle: 

 

                 Low-resolution image:   6     6     5     4            Detail coefficients:   1     -3     -2     1 



 

The original image can be represented as a low-resolution image ((a+b)/2), which consists of four pixels, 

and another four-pixel image, which contains the detail coefficients ((a-b)/2). Recursively iterating this 

algorithm leads to an image that is reduced by a factor of two for each cycle. The detail coefficients are 

needed for reconstructing the transformed image.  

 This simple implementation can be lifted to higher dimensional cases. For a 2-D wavelet 

transformation, the algorithm is applied first in x-direction, and then in y-direction. Similarly, for a 3-D 

wavelet transformation, the algorithm is applied in x-, y- and z-direction successively. One cycle for an n-

dimensional data set is defined as the completion of the algorithm in all n directions.  

 As mentioned earlier, large-scale data sets in the order of several gigabytes are considered for this 

transformation technique. Therefore, one of the design goals for our Java implementation was scalability. 

Precautions have been taken not to exceed the amount of main memory available both on the server and 

the client side. The number of slices loaded into main memory is limited, thus allowing to apply the 

wavelet transformation successively to adjacent slices. The data structures used to store these data sets are 

3-D arrays, where the array sizes are expressed in powers of two. The original resolution of the images is 

converted into the next larger power of two and the array dimensions adapt accordingly. For the data set 

we used in the above example, the 3-D array defined is 512 x 512 x 256. For the first cycle, the 

transformation algorithm is first run along the x-direction, row by row (y-direction), for each of the 231 

slices (z-direction). While loading the slices into the 3-D array, care is taken to fill in the extra space 

allotted by zeros. 

 

 

 

 

 

 

 

 

 

 

 

 
                   Figure 3: Original image array                                      Figure 4: First run: x-direction 
 

 

 
Original 
Image 

 
 
 L          H 



 

 

  

 

 

 

 

                    
           Figure 5: Second run: y-direction                                  Figure 6: Third run: z-direction 

 
 

As shown in the figures above, the image array is split into two halves containing the transformed data 

and the detail coefficients. The transformed data coefficients are the low-pass filtered components, while 

the detail coefficients represent the high-pass filtered volume components. After transforming the data set 

in x-direction (Figure 4), this 3-D array is then transformed along the y-direction (Figure 5). Finally, the 

3-D array is transformed along the z-direction. The resulting 3-D array is shown in Figure 6. 

The final array structure gives us a low-resolution version of the 3-D volume (the LLL segment in 

one sub-octant, and the detail coefficients, which are used for the reconstruction, in the other seven 

octants and in the sub-octants of the next higher levels). The indexing of the array is defined such that the 

transformed coefficients are stored in the upper-left-front corner for each successive cycle. For each 

cycle, the size of the original volume is reduced by a factor of eight. During consecutive cycles, only the 

upper left portion of the transformed volume is considered, leaving the detail coefficients intact. Figure 7 

shows the result after two cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                                    Figure 7: After two cycles 
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4.4 Reconstruction of the wavelet-transformed data set 

 

During transmission, the low-pass filtered coefficients, which occupy the upper-left-front octant of the 3-

D array, are sent first, while the detail coefficients are transmitted at a later time when the network is idle. 

When the detail coefficients are received on the client side, detail information is added to the volume, 

which has already been rendered, in order to refine the image. Our texture-based approach allows for 

gradual refinement of 2-D texture images, so that existing data does not need to be modified. The detail 

pixels can simply be added to the texture plane images, replacing the replicated pixel values that were 

stored previously. The reconstruction of the image data uses simple arithmetic operations (integer 

arithmetics). Therefore, the implementation is very efficient and can be executed in real time by the Java 

applet. As the array received on the client side consists of the low-pass and detail coefficients, the 

respective pixel values at each cycle are obtained by adding and subtracting the corresponding detail 

coefficients to and from the low-pass filtered coefficients. To illustrate this technique, let us go back to 

the one-dimensional image, which we considered for explaining the transformation process. Now we have 

the transformed and detail coefficients as given below: 

 

Low-resolution image:  6     6     5     4                    Detail coefficients:  1     -3     -2     1 

 

To obtain the pixel values of the next higher level of detail, we add the low-pass and detail coefficients to 

obtain one pixel of the first pixel pair, and subtract them to get the second pixel of each pair. 

 

The original pixel values are:  7        5        3        9        3        7        5        3 

 

During reconstruction, it is sufficient to render a user-selected sub-volumes at the highest possible 

resolution, while the rest of the data is reconstructed at a lower resolution to provide contextual 

information about the location of the region of interest. 

 

4.5 Reconstruction using Texture mapping 

 

Texture mapping is a technique to add a visual structure to a geometric object. We create a polygon and 

map a texture image onto it by specifying the texture image location and setting the texturing attributes in 

Java3D. The cross-sections that have been reconstructed in x, y and z direction on the client side are used 

to create a set of three series of perpendicular planes in 3-D space. These cross-sections are not the same 



as the original slices because the data set can be sliced in arbitrary direction. An interpolation technique is 

used to create additional slices, if necessary. A TextureLoader utility class in Java3D is used to load the 

texture images. These images are then mapped in back-to-front order onto a series of polygons arranged 

in parallel in x, y and z directions as shown in figure 8. 2-D texture mapping in Java3D has been used to 

achieve this. All the polygons are drawn as parallel planes, and the 3-D texture coordinates are chosen 

accordingly. 

 

 

 

                                                          
 
 
 
 

                x-direction                              y-direction                                     z-direction 
 

Figure 8:  Texture images mapped onto a stack of polygons 
 

Consider the case of mapping 2-D cross-sections in z-direction. Since the cross-sections are mapped one 

in front of the other, perpendicular to the viewer, only the first cross-section would be visible while the 

other sections are occluded. To make the remaining cross-sections visible, transparency values are 

assigned to all rectangular planes that are used for texture mapping. The resulting semi-transparent 

images of the data set reveal the interior structures of an object. Java3D supports two modes of 

transparency: a scalar transparency value that can be applied to the geometric object, i.e., the textured 

plane, as a whole, or a binary transparency value that can be assigned to each pixel of the texture image. 

The following results were obtained by using the per-plane transparency mode (Figures 9 and 10). 

 

                                   
 
              Figure 9: A 3-D view of the ear                                Figure 10: A 3-D view of a partial data set 



  

Instead of assigning the same transparency value to an entire texture plane, we can use binary 

transparency to eliminate the background pixels and keep the rest of the slice intact. Removing all the 

background pixels that fall below a certain threshold from the 2-D cross-sections and using them for the 

texture maps creates a 3-D volume. To access and modify the alpha channel of the RGBA pixel values of 

the 2-D cross-sections, Java2D BufferedImage and ColorModel classes have been used. Different values 

are assigned to the alpha component of the pixels constituting the skull and to the background pixels. The 

background pixels are distinguished from the rest of the image by using a certain threshold. In order to 

enable binary transparency for dark or extremely bright (white) background pixels (CT/MRI vs. cryo-

sections), a range can be defined for the background pixels. During the rendering process, the alpha 

component of each pixel is checked. If the value is greater than the threshold value, then the pixel is 

drawn, otherwise the pixel is not drawn. By using varying the threshold, a simple segmentation algorithm 

can be implemented which allows us to select different materials, such as skin or bone. To implement this 

mode, we used the RenderingAttributes class. 

 

5. Results 

 

We applied our Haar wavelet transform algorithm to several test data sets. Figure 11 shows a typical 

example of a CT scan of a human brain (512 x 512 x 231). The image series shows a cross-section of the 

3-D volume at four different levels of detail. 

 

 

                                       

                   

                    1st iteration                                                  2nd iteration 

                                          



                                       

                    

                               3rd iteration                                                  4th iteration 

 

Figure 11: Compressed images in successive iterations 

 

Successive iteration reduces the size of the original volume by a factor of eight (23). By applying a run-

length encoding scheme, we were able to obtain much better compression rates for our 3-D algorithm 

than for a 2-D algorithm. This scheme made it possible to transmit a low-pass filtered data set from a 

server to a rendering client over a medium-bandwidth network and render it in real time [15]. Detail 

coefficients are transmitted successively to improve the resolution and quality of the 3-D reconstruction 

by adding more information to the texture planes. The data set is stored on a server with large storage 

capacity, while the Java3D based rendering client runs on a desktop machine. 

 

                    

 

    1st iteration                                                        2nd iteration 

 



                   

                      

                                3rd iteration                                                               4th iteration 

 

Figure 12: Compressed image data and detail coefficients after four iterations 

 

 

By using 2-D texture mapping in Java3D in binary transparency mode for the image planes, a 3-D volume 

has been obtained. Results are shown below (Figure 13). 

 

 

                                              

 

             Sagittal view of the volume with skin                Sagittal view of the volume without skin 

                             



                                              

 

           Coronal view of the volume with skin               Coronal view of the volume without skin 

 

 

                                              

 

         Transverse view of the volume with skin               Transverse view of the volume without skin 

 

Figure 13: Different views of a 3-D reconstructed volume 

 

 

6. Conclusions 

 

The total CPU time taken to read the entire data set from the data repository has been analyzed [15], and 

an optimal cache size of 32 bytes has been determined, which is a hardware-dependent variable for the 

Scalable Visualization Toolkit. The Java-based system is hardware-independent and has been tested on 

SUN Ultra Sparc and SGI O2 (R12000, RISC architecture, 256 MB RAM) workstations. The image 

quality of the transformed volume has also been satisfactory (Figures 9, 10, and 13). 



We have presented a platform-independent scalable wavelet transformation and data compression 

algorithm and a hierarchical, progressive, texture-based Java3D data reconstruction and rendering 

method. Future work includes enhancing the visibility of interior structures occluded by the surface of the 

object. This can be achieved by using adaptive per-pixel transparency, which is currently not supported in 

Java3D. Therefore, the application will be ported to C/C++, making use of the C++ version of the 

Scalable Visualization Toolkits, which will also allow for higher data access and transfer rates, and for 

faster image refinement during visualization.  
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