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Adaptive Vector Quantization for Efficient Zerotree-Based Coding of Video
with Nonstationary Statistics

James E. Fowler

Abstract—A new system for intraframe coding of video is de- system while being inherently suited to implementation over
scribed. This system combines zerotrees of vectors of wavelet coefpriority-based packet networks.

ficients and the generalized-threshold-replenishment (GTR) tech- ;
nique for adaptive vector quantization (AVQ). A data structure, the Recent published results have demonstrated that wavelets

vector zerotree (VZT), is introduced to identify trees of insignifi- Yi€ld excellent performance for subband image coding.
cant vectors, i.e., those vectors of wavelet coefficients in a dyadicZerotree-based methods, such as the original embedded-ze-
subband decomposition that are to be coded as zero. GTR codersrotree-wavelet (EZW) algorithm by Shapiro [1] and the recent
are then applied to each subband to efficiently code the significant space-frequency-quantization (SFQ) technique by Xiengl.
vectors by way of adapting to their changing statistics. Both VZT [2] have, by reducing redundancy among wavelet coefficients
generation and GTR coding are based upon minimization of cri- ~ ' .
teria involving both rate and distortion. In addition, perceptual  With tree-based prediction structures (zerotrees), broken pre-
performance is improved by invoking simple, perceptually moti- Vious wavelet-coding performance barriers and dramatically
vated weighting in both the VZT and the GTR coders. Our experi- advanced the state of the art in still-image coding. Naturally,
mental findings indicate that the described VZTGTR system han- one would like to extend the promising performance of these

dles dramatic changes in image statistics, such as those due to astill-image techniques to video. In this paper, we propose a
scene change, more efficiently than wavelet-based techniques em- ' !

ploying nonadaptive scalar quantizers. system for the coding of video originating in the rate-distor-
tion-based zerotrees of SFQ, whose still-image performance
ranks near the top among zerotree-based techniques.

SFQ couples simple uniform scalar quantization with ze-
rotrees constructed using rate-distortion criteria. Specifically,
I. INTRODUCTION given a fixed scalar-quantizer stepsize, a tree structure is

HE INCREASING demand for video services ovepUilt from the leaves up. In constructing this tree, the cost

modern communication links has created great need {8 distortion which would result from zeroing a subtree of
efficient coding techniques for the storing and transmitting dfavelet coefficients is weighed against the cost in rate which
digital video. While video-coding standards such as MPE&‘OUld be required if that subtree were not labeled as a zerotree.

have been developed and are well suited to many cases, l,ﬁ,:f_&@r_the tree_is determined, the Coefficie_nts that are marked as
coding techniques are required to deal with the particular neegignificant” (i.e., not zero) are coded using the uniform scalar
of many emerging multimedia applications. For example, thegélantlzer._To determine the best qugnuzer stepsize to use for. a
is increasing interest in providing real-time video-on-demarRfirticularimage, the above process is repeated for each stepsize
services over the Internet, the World Wide Web (Www)" a finite set'of al!owed stepsizes, and the one t'hat yleIQS .the
and wireless links. Coding techniques designed for thelQuest rate-distortion cost is chosen. A Lagrgnglqn-multlpller
communication channels, which are inherently unreliable dfgrameter controls the balance between distortion and rate
to network congestion or channel fading, must robustly handfdroughout the algorithm. o _
situations in which packets of data are lost during transmission.The most straightforward application of SFQ to video would
To compensate for the unreliable nature of their transmissidt® Perhaps to simply use the algorithm to Coqe an image
emerging networks may allow the sender to set a priority for i§€duence frame-by-frame. However, the exhaustive search for
dividual packets so that the sender may specify which pack&§ optimal SFQ stepsize, which essentially entails producing
are the most important to receive. A video encoder operating 8inultitude of codings of a single image and choosing the best
such a channel must then determine what information must §/&€. iS too computationally expensive to perform for each frame
received as opposed to what information may be lost witho 2 video sequence. Alternatively, one might envision applying
unacceptably degrading the quality of the received video. SuBEQ frame-by-frame using a quantizer stepsize that does not
band coding can provide this type of partitioning in a way th&hange between frames. This static-quantizer approach, too, is

is meaningfully correlated to the operation of the human visugfoPlematic since, even if it were possible to select a stepsize
yielding suitable performance over one portion of an image
sequence, changes in image statistics due to the nonstationarity
Manuscript received July 6, 1998; revised August 16, 2000. This work Wﬂ%herent to real video data would inevitably require some form
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Fig. 1. Block diagram of the VZTGTR video-coding system. The block labeled &vithdicated a frame delay. Lines labeled with a slash indicate multiple data
paths (one for each subband).

In order to achieve better performance on video which in- In the following, we start with an overview of our proposed
cludes scene changes, we capitalize on recently developed t&TG TR video-coding system in Section Il—we describe the
niques [3], [4] for efficient adaptive vector quantization (AVQ)structure of our VZTGTR system (Section 1I-A), present de-
designed specifically for the coding of nonstationary sourcdsils on the creation of the VZT data structure via rate-distortion
In this paper, we propose a system for the intraframe codinglmdsed criteria (Section 11-B), and discuss the operation of GTR
video sequences which extends SFQ to vectors and then ewmders which adaptively code significant vectors (Section 11-C).
ploys the generalized-threshold-replenishment (GTR) AVQ alve follow with Section Il which contains a body of experi-
gorithm [3], [4] for efficient coding of vectors of wavelet coeffi-mental results that compare the performance of our VZTGTR
cients. Our vector zerotree (VZT) structure efficiently describesystem to that of SFQ on an image sequence containing a scene
which “insignificant” vectors are not to be coded while our GTRhange. Additionally, for completeness, we present a compar-
coders process the remaining “significant” vectors, all the whilson to stack-run (SR) coding [6], [7], a simple and effective
adapting to changing statistics of these vectors. In addition, wavelet-based technique using scalar quantization without ze-
improve perceptual performance by invoking simple, perceptiotrees. Finally, a few concluding remarks are made in Sec-
ally motivated weighting in both the creation of the VZT and ition V.
the GTR coding.

We are motivated to “vectorize” the zerotree concept for a Il. THE VIDEO-CODING SYSTEM

number of_rea}sons. anarlly,_ rate—dlstortl_on theory d'CtateSOurVZTGTR video-coding system is depicted in Fig. 1. Our
that quantization of vectors is more efficient than scalar

system uses a three-level dyadic subband decomposition em-

qgapgzaﬂon [5]. Secondly, creating zerotrges of vectol oying the biorthogonal 9/7 wavelet filter described in [8]. This
significantly reduces the number of nodes in the trees gs

) r?e—level decomposition results in 10 subbands as depicted in
compared fo the scalar case; consequently, we expect 3 2(a). The low-pass subband (baseband) is coded indepen-
the burden of side information needed to represent t & : P P

VZT structures will be significantly less. Finally, although.ently using scalar DPCM followed by a uniform scalar guan-

nonadaptive quantization has been successfully applied ti Zer and arithmetic entropy coding. Each high-pass subband is

i . . blocked into vectors and coded as described in the following
the coding of many types of data, including speech, audio, ..
. . sections.

images, and video, such sources can rarely be assumed td bé

stationary in practice. On the other hand, AVQ in genera),

and GTR in particular, has been shown to achieve efﬁci:'ri]‘t VT Stucture _ o
rate-distortion performance for nonstationary sources [4]. The VZT structure used in our system is similar to the ze-
Below, we demonstrate that our VZTGTR system operaté@iree data structure used in SFQ [2], which in turn has its ori-
more efficiently than SFQ using static scalar quantizatidgfins in the classic EZW technique [1]. The key structural differ-

when the statistics of a video stream change dramaticafijjice between our VZT and the zerotrees of [1], [2] is that our
due to a scene change. VZT is constructed for square vectors of wavelet coefficients



1480

(b)

Fig. 2. (a) Wavelet decomposition used in the VZTGTR systBrhdonates
horizontal low-pass filtering followed by vertical high-pass filterihg.denotes
horizontal high-pass filtering followed by vertical low-pass filtering, abid
denotes high-pass filtering in both directiosg the level of decomposition).
(b) The VZT structure defined as a zerotree of 2 vectors. Baseband vectors

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Given: current frame = k
initial VZT V@, initialized to full tre
VQ codebooks Cs from frame k — 1
initial probabilities pﬁ? of codewords ¢ € Cg
set of rate-distortion parameters, A,
set of perceptual weights, o,

initial costs J(vis) = 0

set iteration count m = ()
do
setm=m+1
set V) = y(m-1)
for level I = 1 to number of levels of decomposition do
for each subband s in level [ do
for each vector v;s with node nj; € VM, do
calculate squared vector norm, P(v;s) = ||vis]|?
calculate distortion, D(v;s) = ||vis — Dis||%, where

Dig = argmcin{asﬂv,»s — {2+ A [— log, (p?s"_l))] } ,ee€ls (1)

calculate updated probabilities p?sn) = N,s/Ng,
where N, = num vectors quantized to c,
and N; = num vectors in subband s
for each vector v;s with node n;; € v do
estimate rate R(v;s) = — logy (p(c'gn>)
where ¢ is the winning codeword from (1)
calculate cost G(v;s) = asD{vis) + As R(vs5)
iflevel l > 1,
calculate cost J; = 3 asP(x), where vector x
is a descendant of v;,
calculate cost Jo = > G(z) + J(x),
where vector x is a child (level I — 1) of v;,
if J; < Ja,
setny = Z, J(vis) = Ji, and remove from

V(M) all descendant nodes of vy,
else,
setnj = S and J(’U,‘S) =Jy
else,
rather than for scalar values. As shown in Fig. 2(b) for the ca setny = S and J(vis) =0

of 2 x 2 vectors, each X 2 vector of wavelet coefficients at while V™ # V=D
decomposition level > 1 of the subband decomposition has

four children vectors at levél— 1; these children vectors areFig. 3. VZR-pruning algorithm.
also size 2x< 2. Nodej at levell, n;, of our VZT corresponds

to a vector in subbands, v;;, of the subband decomposition.[g] replaces the uniform scalar quantization used in [2], and we
Node;; holds one of two values to indicate that each of the mqgify the rate-distortion criterion to normalize distortion mea-

four children of vectow;; are significant (children of symbols g res with perceptual weighting. Fig. 3 shows our VZT-pruning
S or Z), or Z to indicate that;, is a VZT root. The occur- gigorithm in detail.

rence of a VZT root in the VZT structure indicates that we Will "Each iteration of VZT pruning starts at the bottom of the tree
not code any of the descendant vectors,gf(although we will - 5 \works its way to the top. For each vector in each subband
code vectow;, itself). of the current level, the rate-distortion nearest neighbor is de-
. termined using (1) in Fig. 3; this equation is the ECVQ nearest-
B. VZT Pruning neighbor rule with a perceptually weighted distortion calcula-
We determine a new VZT structure for each frame of inpdion. Once each vector has been assigned a nearest neighbor,
video by starting with a full tree (i.e., a VZT structure with alinew partition probabilities are calculated. The algorithm esti-
nodes labeled), and “carving” out the VZT over several it- mates the best cos{{v;,), associated with the descendants of
erations of a pruning algorithm. Our VZT pruning algorithrcurrent vectorw;; by examining two possible cases. That is, the
estimates the best VZT given the set of GTR codebooks pmigorithm decides whether the current node in the VZT should
duced while coding the previous frame. The VZT pruning ise a zerotree root or not. The algorithm estimates the dast (
based on a rate-distortion criterion that determines the best ViiTFig. 3) of assigning a zerotree root to the current node as
tree considering the cost, in terms of distortion, of coding sdtse sum of the squared vector norms of all descendantg, of
of vectors as zero (as is implied by the occurrence of a zeroti@ethis will be the total distortion produced by zeroing out the
root) versus the gain, in terms of rate, of not coding a zerotreed#scendants. On the other hand, the cdstirf Fig. 3) of not
vectors. Additionally, our VZT-pruning algorithm compensateseroing out all the descendants of the current vector is esti-
for the fact that the sensitivity of human vision to image distornated as the rate-distortion cost of coding the children; of
tion is highly dependent on the subband in which the distortidi(z) = «,D(x) + A, R(z), plus the best cost/(x), associ-
occurs. We note that our VZT-pruning algorithm differs fronated with descendants of the children.gf, wherez is a child
the tree pruning of [2] in that entropy-constrained VQ (ECVQ)f v;;. The best cost associated with the descendants,

are notincluded inthe VZT structure as the baseband is processed independ:
of the high-pass bands.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1481

then.J(v;s) = min(.J1, .J5). If the algorithm decides to set thedecoder. This process is then repeated for the next source
current node to be a zerotree root, all the nodes corresponduegtor.
to descendants af, are removed from the VZT. The algorithm To update the codebook, a GTR coder must determine
iterates until the VZT remains unchanged between iterationsan update vectoi;, for the current source vector. In the
The perceptual weights, serve to “normalize” each distor- terminology of [4], [12], the coding of this update vector
tion calculation in view that the perceptual effect of distortiors called thecodebook codeprocess of the GTR algorithm
on image quality varies significantly from subband to subbandnd is responsible for side information transmitted to the de-
Our use of perceptual weights follows the approach taken in [1€dder. In general, the overall rate-distortion performance of
and [11], in which values for just-noticeable distortion (JNDbhe GTR coder will depend on the coding efficiency of not
were determined following perceptual experiments for base semly the vector coder (the mapping of, to ¢*) but also the
sitivity: random noise was added to a mid-gray background aodebook coder (the mapping of, to ;). In the general
each subband and the variance of the noise was increased untitlel of AVQ systems presented in [4], [12], the codebook
the noise was just noticeable against the background. The pmyder and the vector coder are two fundamental components
ceptual weightsq,, used in our video-coding system are theommon to all AVQ systems. However, the interoperation
reciprocals of the JND values reported in [10]. Although in gerof these two components is currently not well understood
eral it would be possible for the values®f to vary from frame and is, in general, complex under general conditions (for
to frame in coding a sequence of images, we currently fix tl®me insights under certain simplifying assumptions, refer

« values to be the same for all frames. to Zeger et al. [13]). Because of this complexity, most
_ AVQ literature has not pursued codebook-coder design in
C. AVQ with GTR depth and has instead relied upon simple codebook coders,

The vectors that are not “pruned” as indicated by the new#pually in the form of a uniform scalar quantizer applied
determined VZT are passed to a set of GTR coders. GTR, & each component of the update vector. With simple
online AVQ algorithm based on rate-distortion criteria, has beé@debook coders, it is often assumed that side information
discussed extensively elsewhere [3], [4], so only a brief revieg¢counts for only a small portion of the total rate, allowing
will be presented here. one to incorporate high-resolution quantization and ignore

The GTR algorithm operates as follows. First, the GTR cod#te distortion introduced by the codebook coder. In our
determines the codeword “closest” to the current source vec¥# TGTR system described here, we too use simple uniform
in a rate-distortion sense. Thatis, for current ve¢farsubband scalar quantization for codebook coding in our GTR coders.
s, vis, codeboolC, is searched to find the rate-distortion-basetlowever, recognizing that the rate due to side information is
nearest neighbor that minimizes = D(c) + v,R(c), where often, in practice, nonnegligible, we choose empirically the
codewordc is in codeboolC;, D(c) is the distortion between Stepsizesy, of our codebook coders so as to yield optimal
v;s andc, andR(c) = — log, p. is a probability-based rate esti-rate-distortion performance (more details on this process
mate. This nearest nearest-neighbor search is exactly that off@lew in Section Il).
well known ECVQ algorithm [9]; to use the terminology intro- We conclude this section by noting some implementation de-

duced in [4], [12], we call this nearest-neighbor-search proce@és pertaining to the use of GTR in our VZTGTR system. Each
thevector codenf the GTR algorithm. GTR coder starts coding an input video sequence with a null

Once the rate-distortion-based nearest neighhdr, is codebook, i.e., a codebook with no codewords. The codebook

determined, the algorithm decides whether an update to iféhen populated through codebook updates until a maximum
codebook is warranted. If the GTR coder decides to updd£256 codewords is reached, after which each codebook update
the codebook, the current vector may be coded with leBgcessitates the removal of an existing codeword. This code-
distortion; however, the codebook update will necessitate twerd removal is accomplished via the move-to-front variant of
transmission of additional bits (so-called “side information{he GTR algorithm as described in [3], [4]. Additionally, we in-
to inform the decoder of the update. To decide if an updagerporate perceptual weighting in each GTR coder; i.e., in the
is warranted, an update cost functioh) = AD + v,AR GTR coder for subbang we usey, = A, /a,, where\, anda,

is calculated, whereAD is the potential gain in distortion are, respectively, the rate-distortion and perceptual-weight pa-
due to an updateAR is the cost in side information of the rameters used previously in VZT pruning. Each GTR coder pro-
update, andy, is a Laplacian constant dictating the tradeoffluces a sequence of VQ indices (from the vector coder), as well
between rate and distortion in the GTR coder for subba@ég side information (from the codebook coder). Each VQ-index

s. Suppose we do not update the codebook; in this casgduence is coded independently using arithmetic coding, pro-
the current source vector will be coded with a distortioducing a separate bitstream for each subband. The side infor-

of D(¢*), the distortion between;, and ¢*. On the other mation from each GTR coder consists of a map of binary flags
hand, if the codebook is updated, we will add some vecttidicating, for each vector coded in the subband, whether an up-
%;s to the codebook resulting in;, being coded with dateoccurs,and,inthe case of an update, the vector components
distortion D(%;,), the distortion betweem;, and ¢;, Thus, of the updated vectors. The side information for all subbands is
the potential improvement in distortion due to a codebodRultiplexed together and combined with the VZT information;
update iSAD = D(%;,) — D(¢*). If AJ < 0, the gain in i.e., the update flags are combined with the VZT symbols, re-
distortion outweighs the cost in rate, and the codebook $4lting in an stream of symbols from a four-symbol alphabet.
updated. Otherwise, merely the index of is sent to the This symbol stream is entropy coded using arithmetic coding.
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Fig. 4. Rate-distortion curves for the VZTGTR system for a variety of codebook-coder quantizer stemsiegethe “Football” portion of the “Football-Susie”
test sequence. Each curve is calculated by increasiingm zero while holdingy fixed.

The update-vector components are coded as described abowa Sections 1lI-A-D, we “optimize” the operation of the
using a uniform scalar quantizer followed by arithmetic entropyoding techniques to the “Football” portion of our “Foot-
coding. ball-Susie” test sequence. That is, the parameters of each
technique are selected to provide best average distortion perfor-
mance for a target bit rate over the “Football” portion of the test
[ll. EXPERIMENTAL RESULTS sequence. Then, in Section IlI-E, we examine the performance

. . of the algorithms, with parameters unchanged, over the latter
We now describe experiments conducted to compare the PR sie” portion of the “Football-Susie” test sequence.

formance of our VZTGTR system with that of other wavelet- Throughout the results, we select a target bit rate of 0.5 bpp

based coding algorithms, namely SFQ [2] and SR [€], [7]'Add\'/§/hich, at SIF resolution and full-frame rate, corresponds to

tionally, we present results for the MPEG-1 video-coding stan- :
dard [14] which does not employ wavelets but uses a blo n output channel rate of approximately 1.27 Mbps, about the

based DCT transform. We focus our attention on the situationﬁr?ndW'dth of a CDROM#1.5 Mbps). For applications whose

: o i - _bandwidth is more constrained, as may be the case for net-
which the statistics of an image sequence change dramatical A :
; work-based packet video, we may be able to meet the desired
due to a scene change. To simulate the scene change, we

ﬁ%%nel rate by reducing the frame rate or spatial resolution
a 200-frame image sequence composed of 125 frames from the y g P '

“Football” sequence followed by 75 frames from the “Susie” se-

guence. This test sequence is grayscale with a spatial resolutﬁ)nThe VZTGTR System

of 352 x 240 pixels (SIF resolution) and a temporal sampling of The rate-distortion performance of our VZTGTR system de-
30 frames/s (noninterlaced). We arrange the experiment so thahds mainly on the values of, the stepsizes of the uniform
the algorithms code the initial 125 frames (the “Football” porscalar quantizers used by the codebook coders to code update
tion) of the sequence at the same target bit rate and then exanvieetors, and\,, the parameters that determine the balance be-
performance after the scene change. We note that all rate valiwesen rate and distortion throughout the system. In general, our
are calculated from “real” bitstreams; for the VZTGTR, SFQsystem allowsy, and A, to vary by subband; however, for sim-
and SR algorithms, these bitstreams are produced by adapfilieity in the results here, we constrain the system to use the
arithmetic coders [15]. All rate figures are presented in bits/pixedme values for all subbands. Thatds,= ¢ andx, = X for
(bpp). Each of the wavelet-based techniques considered usash subbanel We “optimize” thesg andX over the “Football”

a 3-level dyadic wavelet decomposition implemented with tigortion of the “Football-Susie” test sequence by the following
biorthogonal 9/7 filter coefficients given in [8]. process.
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First, we select so as to provide the best rate-distortion per ~ v T ' ' 1
formance over the initial frames of the test sequence. That : : : : ‘
considering average rate and average distortion over only =,
“Football” portion of the test sequence, we calculate rate-di
tortion performance curves for a varietypfalues and choose A Bl C1AL
the one that yields the highest PSNR at the targetrate of 0.5 b %} N - SO |
Fig. 4 shows these rate-distortion curvess 55 is the chosen
stepsize. Next, to meet the target bit rate over the initial frame ESO_
we fix ¢ = 55 and adjust, by trial and error, the rate-distortiol &
parameten so that the rate, averaged over the first 125 fram:
of the “Football-Susie” test sequence, is approximately 0.5 by 2
This A(A = 150) is then used in the coding of each subband i
each image of the test sequence.

We use a VZTGTR structure built upon 2 2 vectors

of wavelet coefficients. Although larger vector dimension _ _ : ‘ v
allow, theoretically, for greater rate-distortion efficiency in thi 24 % a0 0 s 100 120 1o e e 00
vector coder, clearly the additional side information required .. Frame Number
transmit update vectors mitigates to some extent this advantage. (@
Additionally, large vector sizes result in less flexibility in de-
termining zerotrees of insignificant vectors since large regiol
of coefficients must be set to zero for a zerotree to occur. The
large regions of zero coefficients tend to over-smooth tt
image resulting in reduced visual quality. Our experience h
indicated that a vector dimension of22 gives an appropriate
tradeoff between vector-coder efficiency, side-informatio
burden, and visual quality.

Our VZTGTR system uses DPCM followed by uniform
scalar quantization for the coding of the baseband; this i 0% =
traband DPCM uses a simple 2-D scalar predictor averagi ] T iz ' :
neighboring intraband pixels above and to the left of the curre oz~ j=me 88
pixel. We use the same quantizer stepsizg,= 31.5, that we
use in our implementation of SFQ (see below) to quantize tl o
difference values resulting from the DPCM predictor. : :

We use an implementation of the arithmetic coder describ s i : . j ; i ; i
by Witten et al. [15] to code the various quantities outpui  ° = T e 00 @
by the VZTGTR system. Specifically, our implementation (b)
a"O\_NS the_ definition _c_)f multiple contex_ts in which the arlth_Fi . 5. Performance of the VZTGTR video-coding system versus that of
metic-coding probability tables can be independently adaptegh SFQ [2] algorithm, the SR [6], [7] algorithm, and MPEG-1 [16] on the
In the VZTGTR system, we use separate arithmetic-codirfgpotball-Susie” test sequence consisting of 125 frames from “Football”
contexts for the update-vector components, the VQ indicd¥lowed by 75 frames from “Susie.” (a) Distortion. (b) Rate.
and the joint VZT-symbol/GTR-update-flag symbol stream.

Finally, we note that our current (nonoptimized) implemenndependently—see below). The original description of SFQ
tation of the VZTGTR system, with all parameters fixed, takegalled for restricting the possiblgto a finite set, and then per-
about 1.8 s on a Pentium |1 266-MHz 128-MB computer to codgrming an exhaustive search of these allowed stepsizes to find
a single frame of the test sequence. the best one for a particular image. Specifically, the allowed

) stepsizes are = 7.5 + 0.1k wherek = 1, 2, ..., 245. Our
B. The SFQ Algorithm implementation of SFQ, using an exhaustive search over these

The SFQ algorithm, as presented in [2], was design@d5 possible stepsizes, requires about 106 s of computation
to code single images. Consequently, we apply SFQ in(@n a Pentium Il 266-MHz 128-MB computer) to code a single
frame-by-frame fashion to code our “Football-Susie” tegtame of the test sequence. However, the coding of this same
image sequence. As we did for VZTGTR in the previouBame with the stepsize already specified takes only 0.92 s.
section, we “optimize” the performance of SFQ to the initial Since an exhaustive search is too computationally expensive
“Football” portion of the test sequence. To do so, we must selg¢otperform for each image of a video sequence, we fix¢he
a scalar-quantizer stepsizend rate-distortion paramet&for to a preselected value which is then used to code the entire se-
the SFQ algorithm. guence. To determine this stepsize, we perform the exhaustive

The rate-distortion performance of the SFQ algorithm search described above on only the first frame of the sequence.
closely tied to its scalar-quantizer stepsize which is used Adterwards, we adjust by trial and error the rate-distortion pa-
each of the high-pass subbands (the low-pass subband is cadeaeter ), so that the rate, averaged over the initial 125 frames

26

06

o
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e (bits/pixel)
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Fig. 6. Reconstructed frames from the “Football-Susie” sequence. (a) Frame 60, VZTGTR (26.5 dB, 0.510 bpp). (b) Frame 160, VZTGTR (31.5 dB, 0.119 bpp)
(c) Frame 60, SFQ (26.5 dB, 0.523 bpp). (d) Frame 160, SFQ (31.7 dB, 0.214 bpp).

with ¢ fixed, is approximately 0.5 bpp. Thig A = 378) isthen do, however, mention the possibility of applying dead-zone
used to code the entire “Football-Susie” test sequence. guantizers to increase the lengths of zero runs). The rate-dis-
In our implementation of the SFQ algorithm, the basebandtisrtion performance of the SR algorithm is determined entirely
coded with uniform scalar quantization. The baseband quantibgrthe stepsize of this uniform scalar quantizer. Although SR
stepsize ¢, = 31.5) is chosen to provide the best rate-distoris a fast coding algorithm (our implementation requires 0.51
tion performance (over the baseband alone) for thehosen s to code one image of our “Football-Susie” test sequence), it
above; the stepsizeg;, = 7.5+ 0.1k, k =1, 2, ..., 245, are faces the same problem as SFQ when applied to video in that
searched to find the optimal stepsize. exhaustively searching for an optimal stepsize for each frame
The scalar-quantizer indices produced by the SFQ algorithsinfeasible, while scene changes in video content require that
are entropy coded using the same multiple-context arithmesiome form of adaption be present in the algorithm. To illustrate
coder used for the VZTGTR system. We use a separate arithis point, we apply the SR algorithm frame-by-frame to the
metic-coding context for the quantizer indices of each subbariBootball-Susie” test sequence which contains a scene change.
To do so, we select the SR scalar-quantizer stepsize so that
C. The SR Algorithm the rate averaged over the initial “Football” portion of the test
The SR algorithm [6], [7], like SFQ, is a wavelet-based€duence is 0.5 bpp and then use this stepgize 70) to code
still-image coding method. However, unlike SFQ, SR does nBté entire test sequence. o _ _
use zerotrees for efficient coding of insignificant coefficients; 10 €ntropy code scalar-quantizer indices, our implementation
instead, SR applies scalar quantization to the wavelet coefif-the SR algorithm employs a two-context adaptive arithmetic

cients and codes, in raster-scan fashion within the subbarfeRder as described in [6] and [7]; the implementation of this
the lengths of runs of zeros between significant (i.e., nonze/g)der is the same as that used for the VZTGTR system and the

coefficients. Afterwards, an arithmetic coder operating witRFQ algorithm.

a novel four-symbol alphabet codes the run lengths and the
significant-coefficient values. D. The MPEG-1 Standard

As described in [6] and [7], SR uses a single static-uniform We use the University of California Berkeley MPEG-1 coder
scalar quantizer over all the subbands of an image (the authd®] to provide a comparison between the wavelet-based al-
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(b)

(d)

Fig. 7. Reconstructed frames from the “Football-Susie” sequence. (a) Frame 60, SR (26.3 dB, 0.514 bpp). (b) Frame 160, SR (31.2 dB, 0.159 bpp). (c) Fram
60, MPEG (25.8 dB, 0.508 bpp). (d) Frame 160, MPEG (30.2 dB, 0.221 bpp).

TABLE | nent of the image sequence. The execution time on the “Foot-

AVERAGE DISTORTION AND RATE PERFORMANCE OF THEALGORITHMS OVER  ha|l-Susie” sequence for this implementation of MPEG-1 is ap-
THE “FOOTBALL-SUSIE” TEST SEQUENCE .
proximately 0.1 s/frame.

“Football” “Susie” Entire
portion only portion only test sequence E. Performance After Scene Change
PSNR | Rate || PSNR | Rate || PSNR | Rate
(dB) | (bpp) || (dB) | (bpp) || (dB) | (bpp)
VZTGTR 26.7 | 0.500 322 10117 28.0 | 0.356
SFQ 26.6 | 0.503 32.4 | 0.208 28.0 | 0.392

SR 26.5 | 0.497 31.8 [ 0.149 27.8 | 0.367
MPEG-1 259 | 0.495 30.7 | 0.217 27.7 | 0.389

The above procedures can be considered to have “opti-
mized” the operation of the coding techniques to the initial
frames of the “Football-Susie” test sequence. That is, the al-
gorithm parameters of each technique were selected to pro-
vide the best distortion performance for an average rate of
0.5 bpp over the “Football” portion of the test sequence. We
now investigate performance after the occurrence of a scene
gorithms described above and more traditional DCT-based atange in which the image statistics differ significantly from
proaches as exemplified by the MPEG-1 video-coding standatidose on which the “optimized” parameters were originally
As we are considering only intraframe coding in the resultietermined. To do so, we allow the algorithms under consid-
presented here, we disable motion compensation in the MPEftion to continue coding the “Football-Susie” test sequence
coder (i.e., only I-frames are used to code the “Football-Susief the latter 75 frames (the “Susie” portion) with parameters
test sequence). As before, we “optimize” the MPEG coder tmmchanged from those used to code the initial frames of the
the target bit rate of 0.5 bpp over the initial “Football” portiorsequence. The frame-by-frame evolution of the rate and dis-
of the test sequence. To do so, we adjust the quantization-sdaktion performance of the algorithms over the entire “Foot-
value (“quality factor”) of the MPEG coder until the bit rate avball-Susie” sequence is given in Fig. 5, while rate and distor-
eraged over the initial “Football” frames is 0.5 bpp. We thetion figures averaged over portions of the sequence are shown
maintain this quantization scale over the remainder of the t@stTable |. Frames from both the “Football” and “Susie” por-
sequence. All bit rates and distortion values reported for thiens of the reconstructed output sequences are presented in
MPEG coder are calculated for only the Y (luminance) compé-igs. 6 and 7.
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Fig. 8. Percentage of vectors per frame that are updated by the VZTGTR
system while coding the “Football-Susie” test sequence. The average percent: ' '
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TABLE I
PERCENTAGE OFTOTAL BIT RATE BY SUBBAND FOR THEVZTGTR SYSTEM
AVERAGED OVER THE ENTIRE “FOOTBALL-SUSIE" T EST SEQUENCE

vQ Side gos
Subband || Indices | Information Total g
B3 18.2% wa 18.2% gos
H3 4.8% 4.2% 9.0%
V3 4.7% 4.1% 8.8% 04
D3 3.9% 2.6% 6.5%
H2 8.1% 5.0% 13.1% b ®
V2 7.5% 5.2% 12.7% T
D2 4.7% 1.6% 6.3% : : : : :
H1 12.2% 1.6% 13.8% % 20 ® % % o o 0 160 im0 zo0
Vl 100% 16% 116% Frame Number
D1 0.0% 0.0% 0.0% ()
Total 74.1% 25.9%% 100.0%

Fig. 9. Performance of the VZTGTR video-coding system versus that of

The total side information consists of 14.7% for the coding of the SFQ [2] algorithm, the SR [6], [7] algorithm, and MPEG-1 [16] on the
“Susie-Football” test sequence. (a) Distortion. (b) Rate.

update-vector components and 11.2% for the joint coding of GTR
update flags and VZT symbols.
quality achieved by the wavelet-based algorithms is nearly iden-
In Fig. 5 and in Table I, we observe that the wavelet-basé@al. However, the VZTGTR system maintains a better looking
algorithms have nearly identical rate-distortion performand@age after the scene change. In particular, the VZTGTR coder
over the “Football” portion of the test sequence. However, tigives better reproduction of edges and areas of detail. Our ob-
VZTGTR system achieves significantly superior performanggrvations indicate that this superior perceptual performance is
after the scene change. Over all of the “Susie” portion of tiiue to both the perceptual weightings present in the VZTGTR
sequence, VZTGTR operates at a substantially lower bit raggstem as well as to the GTR coders which tend to preserve
than SFQ (from Table |, nearly 43% lower on average) whikedges and other areas of high detail [4]. In comparing the per-
achieving approximately the same or slightly lower PSNR fdermance of the wavelet-based techniques to that of MPEG-1,
the frames after the scene change (32.1 dB average PSN®&note that, whereas the wavelet transform tends to distort the
versus 32.4 dB for SFQ). Additionally, VZTGTR clearly outimage by “blurring,” the block-based DCT of MPEG-1 tends
performs SR, obtaining greater PSNR at a lower rate. Finaltg, generate significant “blocking” artifacts. Although it is gen-
we note that all the wavelet-based algorithms outperforgfally difficult to perform a meaningful comparison between
MPEG- 1 over the entire sequence in terms of rate-distortisgverely blurry and severely blocky images, the visual perfor-
efficiency. mance of MPEG-1 over the “Football-Susie” sequence appears
From Figs. 6 and 7, similar conclusions can be drawn rtg be roughly equivalent to or marginally better than that of the
garding visual-quality performance of the wavelet-based teahavelet-based techniques even though its PSNR performance is
niques. Over the “Football” portion of the sequence, the visul@wer.
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The GTR coders in the VZTGTR system constantly transnthie decoder for this sequence account for only 14.7% of the
update vectors during the coding process, as can be seenin Figt8l bit rate. When the static scalar quantizer used to code
in which the percentage of update vectors per frame is plottte update vectors is mismatched to the source as is the case
for each frame of the “Football-Susie” sequence. On averagiring the latter frames of the “Football-Susie” sequence,
1.7% of the vectors of the test sequence are updated; thesethp-rate-distortion performance of the VZTGTR system may
dates account for 14.7% of the total bit rate. A breakdown of tisaiffer. However, the resulting inefficiency is much less than
total bit rate by subband is given in Table . that incurred by SFQ, whose static scalar quantizer, used in

Finally, the results above illustrate that the VZTGTR systethe coding of 100% of the significant wavelet coefficients, is
successfully adapts from a fast action sequence (“Footbalijuch more crucial to the rate-distortion performance of the
to less active content (“Susie”). Fig. 9 shows the results foradgorithm. In addition to superior rate-distortion performance,
“Susie-Football” sequence in which the roles of the “Footbalthe VZTGTR also produces better perceptual quality for most
and “Susie” sequences have been reversed. For these resofte frames following the scene change due to both perceptual
the procedures of Sections IlI-A through IlI-D have been rawveighting present in the VZTGTR system as well as to the
peated, this time optimizing the algorithms for the initial “SusieGTR coders, which tend to preserve edges and other areas of
portion of the test sequence. The target bit rate for the initibigh detail.
portion of the sequence was 0.25 bpp. For this “reversed” testn concluding, we make several remarks concerning issues
sequence, we see that the VZTGTR system achieves greatgen to future work. First, we note that our VZTGTR system
PSNR for nearly the entire sequence. The latter “Football” pgorovides natural priority partitioning of the coded bitstream not
tion of the test sequence will inherently require an increaspdesent in the other video coding methods such as MPEG. For
rate over that of the initial frames in order to maintain visuatansmission over priority-capable packet-based networks, we
quality; the VZTGTR system, through its adaption mechanisranticipate increasing resilience to packet-loss by sending base-
is better able to provide this increased rate. The other algmnd and side-information data streams at highest priority while
rithms, which tend to code the latter “Football” frames at aending high-pass subbands with decreasing priorities based on
rate closer to that used for the initial portion of the sequendégeir respective location in the subband tree. Our future plans
achieve, consequently, lower PSNR performance. The visualelude the investigation of the performance of VZTGTR over
quality performance of the algorithms after the scene changesinch priority-based transmission under packet-loss conditions.
the “Susie-Football” sequence is similar to that observed abovdn addition, we note that we have restricted our experiments
for the “Football-Susie” sequence. here to intraframe coding as an efficient intraframe technique is
the basis for successful motion-compensated approaches. The
incorporation of motion compensation to our VZTGTR system
in such a way as to remain resilient to packet loss is nontrivial

The primary task of a video-coding system is to maintain coand remains a topic for future investigation.
sistent visual quality at the decoder for the entire sequence [17]Finally, the X, parameters used in the VZTGTR system
The key difficulty in applying many image-coding algorithmgletermine a balance between rate and distortion achieved by the
to this task is the selection of algorithm parameters. Even if it#stem. For the results presented here, we have determined suit-
possible to selecy priori, parameters yielding suitable perfor-able A, values by trial and error; although this simple approach
mance over one portion of an image sequence, dramatic shigtsufficient for our needs here, it is impractical in a general
in statistics due to scene changes inevitably require some fo#giting, and one might choose to employ more sophisticated
of adaption. methods for searching the space of rate-distortion parameters

For instance, the performance of the SFQ algorithm is closdl-g., those proposed in [18]). Whereas some video-coding
tied to its scalar-quantizer stepsize. However, determining t@¢hniques may attempt to provide constant-distortion or
optimal stepsize for each image of a video sequence is clesg@fjnstant-rate performance, in the experiments presented here
infeasible from a computational standpoint. It is also unwafor our VZTGTR system, it is the balance between these two
ranted—our observations indicate that the optimal stepsize of@antities that is held constant. However, as stated above,
changes little over a single scene. Yet, failure to update tHe true aim should be to maintain consistent visual quality.
stepsize after a scene change may yield dire consequenceg\f8rough our experimental results indicate that the VZTGTR
rate-distortion performance, as well as for visual quality, as #/stem approaches this goal more closely than the other tech-
evidenced in Figs. 5-7. nigues examined, we anticipate that allowing time-varying and

By adding AVQ coders to a rate-distortion-based zerotrgelbband-varying\; values will help better achieve the goal of
framework, the VZTGTR system incorporates into SFQ ag¢Pnsistent quality. Our future plans include incorporating into
adaption mechanism necessary for efficiently handling sceif® VZTGTR system mechanisms that dynamically adjust
changes. The VZTGTR system adds vectors to its codebook¥/ables as coding progresses to better maintain visual quality
needed to satisfy rate-distortion criteria, and is thus better akfigoughout the entire sequence.
to adjust its rate to maintain visual quality. In the experiments
outlined above, this codebook updating occurs for an average REEERENCES
of 1.7% of the vectors in each frame of the “Football-Susie” ) ) ) )
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