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ABSTRACT This paper describes our ongoing research into the construc-
tion of an Adaptive Vector Quantization (AVQ) image encode. We provide
the motivations behind an AVQ encoder and report on our progress-to-date
in realizing a Vector Quantization (VQ) encoder. We describe the hardware
that has been built to compress video in real time using full-search vector
quantization. This hardware implements a differential-vector-quantization
(DVQ) algorithm which employs entropy-biased codebooks designed us-
ing an Artificial Neural Network (ANN). The theoretical properties of this
codebook design method are discussed. We conclude with a description of
the framework we are using to study various AVQ techniques with the goal
of modifying our existing VQ hardware in order to realize an AVQ encoder.

1 Introduction

Ideally we would use lossless data compression for all compression tasks.
Indeed, lossless compression is required for compression of many kinds of
textual data, e.g., computer programs, documents and numerical data. Un-
fortunately, when applied to images lossless compression techniques achieve
only modest compression rates (2:1 to 8:1). Furthermore, digital data has
become more prevalent and the demand for real-time image-coding hard-
ware, particularly for use with images, has increased dramatically.

Fortunately, for many image applications lossy data compression can be
used as perfect reproduction is not necessary. Lossy compression techniques
can achieve compression ratios can be as high as 100:1.

Vector quantization (VQ) has long been recognized as a useful technique
for lossy data compression, attracting attention for its efficient compression
of digitized image and speech data. However, the design of real-time vec-
tor quantizers for image coding has been challenging due to the inherent
computational complexity of VQ encoders and the extremely fast speeds
demanded by real-time video applications. Furthermore, the computational
complexity of traditional codebook-design methods has also hindered real-
time use of VQ. It has recently been shown that artificial neural networks
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(ANN’s) can be used to suggest real-time VLSI architectures as well as
provide algorithms for the design of VQ codebooks which circumvent lim-
itations of traditional algorithms [ACK89].

This paper describes our ongoing research into the construction of a
Adaptive Vector Quantization (AVQ) encoder for images. We describe mo-
tivations behind an AVQ encoder and our progress to-date in realizing one
vector-quantization encoder. In particular we describe hardware that has
been built to compress video in real time using full-search vector quan-
tization. This architecture implements a differential-vector-quantization
(DVQ) algorithm which features codebooks designed using frequency-sen-
sitive competitive learning (FSCL) [AKCM90], an ANN algorithm that
attempts to maximize codebook entropy while minimizing distortion. We
then describe some of the theoretical properties of this codebook design
method. We conclude with a description of a framework we are currently
using to study various AVQ techniques in order to modify our existing VQ
hardware to realize an AVQ encoder.

2 Vector Quantization

A VQ system consists of an encoder, a decoder, and a transmission channel.
The encoder and the decoder each have access to a fixed codebook, Y. The
codebook Y is a set of ¥ codewords (or codevectors), y, where each y is
dimension k£ and has a unique index, 7, 0 < j <Y — 1. We describe our
codebook design method in Section 4.3.

The image is broken into blocks of pixels called tiles. Each image tile
of n x m pixels can be considered a vector, u, of dimension k¥ = mn. For
each image tile, the encoder selects the codeword y that yields the lowest
distortion by some distortion measure d(u,y). The index, j, of that code-
word is sent through the transmission channel. If the channel is errorless,
the decoder retrieves the codeword y associated with index j and outputs
y as the reconstructed image tile, @i. A block diagram of a VQ system is
shown in Fig. 1.

An extensive discussion of vector quantization techniques and applica-
tions has been given by Gersho and Gray[GG92], and the basic theory has
been summarized in the context of image applications by others [FCA93].

2.1 Why use VQ rather than MPEG?

The MPEG standard has emerged as an effective standard for image com-
pression. However, we believe there are four reasons why VQ should still
be considered as a viable candidate for wide-spread use as an image coding
method:
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FIGURE 1. Block diagram of VQ system.

e Errors: because of run-length encoding and transmission ordering,
nominal-MPEG is quite “error sensitive.” VQ is relatively error-insensitive,
and can be made more error-insensitive via codebook ordering tech-
niques [CP93, PC95].

e Regularity: VQ design has been inezpensively implemented in real-
time hardware.

e Decoder cost: MPEG is a symmetric algorithm, and thus both the
encoder and decoder require equivalent computation. In contrast, VQ
decoders are very simple.

e Adaptive Coders: MPEG does not provide an explicit adaptation
mechanism, but Adaptive VQ (AVQ) has been under investigation for
some time and adaptation mechanisms are easily incorporated into

VQ.

These factors led us to build a prototype VQ encoder, which we describe
below.

3 Differential Vector Quantization

Differential Vector Quantization (DVQ) is a combination of VQ and DPCM
which replaces scalar quantization in DPCM framework with vector quanti-
zation. Consequently DVQ has many of the compression advantages of both
VQ and DPCM. DVQ has been presented previously in [Rut86], where it
was called vector DPCM, and in [GG92], where it was called predictive
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FIGURE 2. Block diagram of DVQ algorithm

VQ (PVQ). Our DVQ algorithm has been reported in detail previously
[FCA93], so only a brief overview is given here.

Fig. 2 shows the general block diagram of our DVQ algorithm. In the en-
coding process, the predictor uses previously reconstructed tiles to predict
the pixel values of the current tile. This predicted tile, PV is subtracted
pixel by pixel from the actual tile, PIX. The resulting difference tile, DIFF,
is vector-quantized and the index, INDEX, is broadcast via the transmis-
sion channel to the decoder. The encoder inverse vector-quantizes INDEX,
producing a reconstructed tile, PLX, to be used in later predictions. Note
that, since the vector quantizer processes difference tiles, the VQ codebook
must be appropriately derived from “difference images.”

DVQ has several advantages over both scalar DPCM and VQ. Primar-
ily, the quantization of vectors yields better compression performance than
that of scalars. Additionally, since the VQ is performed on difference val-
ues rather than on the image itself, the resulting image is less “blocky”
[Rut86]. Finally, the codebooks for DVQ tend to be more robust and more
representative of many images than codebooks designed for VQ because
the difference tiles in a DVQ codebook are more generic than the image
tiles in a VQ codebook [Rut86].

The Vector-quantizing Associative Memory Processor Implementing Real-
time Encoding (VAMPIRE) is a special-purpose, digital associative mem-
ory designed for video-rate vector quantization. The details of the design
and operation of this chip are found elsewhere [Adk93], so only a brief
overview is given here. Table 1.1 presents a summary of the VAMPIRE
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TABLE 1.1. Summary of the VAMPIRE Chip

Die size 4.6 X 6.8mm

Technology 2pm CMOS n-well
Vector Rate 3.57 x 10° vectors/sec
Encoding delay*  approx. lus

Codebook size 32 codewords on one chip;

expandable to 256 with 8 chips
Vector dimension  Four 8-bit components
Power supply 5V

*Encoding delay is for the VAMPIRE chip operating
in the DVQ architecture

chip’s characteristics.

The VAMPIRE chip is designed to quantize vectors at video rates. The
input to the chip is 32 bits representing a 4-dimensional vector with each
vector component having 8 bits of resolution. Since these vectors are com-
posed of four video samples, the designed throughput is that of the NTSC
colorburst (3.579545MHz, or one vector every 280ns). Each VAMPIRE chip
holds 32 codewords. The chips can be operated alone (for codebooks of 32
or less codewords) or can be linked together to accommodate codebooks of
greater than 32 codewords.

4 Codebook Design and Optimal Quantizers

Obviously, since the codebook holds the vectors used to replicate all images
(or at least all of the images for some period of time), the design of the
codebook for a VQ encoder is quite critical to the overall effectiveness of
any VQ-based coding scheme.

It has been known for some time that the necessary conditions for mini-
mizing the average distortion, assuming a convex distortion measure, are:

o Nearest neighbor selection rule

y(x) =A{yi | lly:i — x[| <= [ly; — x|| for all j},and
e Centroid condition

/C‘ xp(x)dx

i

U on

i

Thus, analytical methods for VQ codebook design require knowledge of
the data pdf, which are not known in realistic cases. For unknown data
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pdf, a set of M training data vectors must be used for the design of the
N quantizer codevectors, where M >> N.

The classic and most commonly used batch codebook design algorithm
is the LBG (Linde-Buzo-Gray) algorithm[LBG80], a generalization of the
Lloyd-Max algorithm. This is a descent algorithm, thus it converges to a
local minimum depending on the initial state.

Unfortunately the computational complexity and memory requirements
of such traditional VQ codebook design methods has restricted their use in
real-time applications [LBG80]. It has been shown that ANN’s can be used
to design VQ codebooks and circumvent the limitations of traditional algo-
rithms [ACKS89), for the following reasons. First, ANN’s consist of a large
number of simple, interconnected computational units that can be operated
in parallel. Second, ANN-codebook-design algorithms do not need access
to the entire training data set at once during the training process. It should
also be noted that these features make ANN algorithms ideally suited for
the design of adaptive vector quantizers [FCA93], which are discussed in
Section 5.

4.1 Competitive Learning

The simplest ANN algorithm for VQ codebook design is Competitive Learn-
ing (CL). At time ¢ (discrete) a data vector x(t) is presented and the fol-
lowing steps are executed:

e find the winner, the codevectory,, which is closest to the input vector:
lyult) — x(0) <= lly(t) — x(0)] for all i

e update the winner as:
Yu(t +1) = yu(t) + a(t) * (x(t) = yu(t))

where a(t) is the learning rate at time ¢.

It can be shown that, for CL, the necessary conditions for convergence
to a local equilibrium,

(o]
thAIEO a(t) = O,andz a(t) = oo,
t=1

are sufficient for convergence to a local equilibrium if the initial state is
inside the domain of attraction of some equilibrium (from stochastic ap-
proximation theory).

Unfortunately, this simple algorithm is easily trapped in local minima. In
many realistic practical applications, these minima are the result of code-
word underutilization. Codeword underutilization occurs when a codeword
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is never designated as the closest codeword to an input vector,and is never
updated. Two mechanisms have been proposed to overcome this problem:
Kohonen’s Self-Organizing Feature Maps (KSFM), and Conscience tech-
niques including Frequency Sensitive Competitive Learning (FSCL). Both
of these techniques are described below.

4.2  Kohonen Self-Organizing Feature Maps

In a KSFM, a topology B, (usually two-dimensional) is associated with the
codevectors. Once again a data vector, x(t), is presented and the following
steps are executed:

e the winner y,(t) is selected as the codevector closest to the input
vector x(t)

e All codevectors inside a neighborhood of the winner, defined on B,
are updated towards the input vector as:

Ya(t+1) =yn(t) + a(t) = h(n,w) * (x(t) — ya(t)),

where h(n,w) is usually a decreasing function of the distance ||y, —
Yul s, and the size of the winner’s neighborhood also decreases with
time.

The KSFM technique has been shown to utilize all codevectors, and
thus solves the underutilization problem. Further, it can be shown that
necessary and sufficient conditions for convergence, as in the case of CL,

are: [CF86, RS88]

t—oo

lim a(t) = O,andz a(t) = co.
t=1

Finally, equilibrium results for one dimensional data spaces have been
derived [Rit91], and the equilibrium codevector density is proportional to
a power of the data pdf which depends on the size of the winner’s neigh-
borhood.

Unfortunately, while KSFMs solve the underutilization problem and have
been shown to have attractive theoretical properties, they exhibit certain
problems. First, because of the use of neighborhoods, B, they are computa-
tionally more expensive. Second, the selection of the neighborhood topol-
ogy can be difficult for many dimensional data spaces. The FSCL algorithm
circumvents these problems.

4.3  Frequency Sensitive Competitive Learning

The Frequency Sensitive Competitive Learning (FSCL) method is an ANN
method which features a modified distortion measure that ensures all code-
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words in the codebook are updated equally frequently during iterations of
the training process.

This is accomplished by assigning a counter ¢,(t) to each codevector
¥n(t) that is incremented every time y,,(t) wins the competition. The win-
ner, ¥, (t), is selected as the codevector that minimizes the product of the
distortion measure and a fairness function F, i.e.,

F(en(®)llya(t) = x(®)].-
The usual form of the fairness function can be expressed as:
F(c) =P, with Jlim_ (1) = 0.

It has been shown that codebooks designed with FSCL yield mean squared
errors and signal-to-noise ratios comparable to those of the locally opti-
mal LBG algorithm [ACK89]. Also, FSCL yields codebooks with sufficient
entropy so that Huffman coding of the VQ indices would not provide sig-
nificant additional compression [FCA93]. Finally, FSCL overcomes under-
utilization problems, is relatively efficient, and is well-suited for adaptive
applications.

Recently we have been able to establish the convergence and equilibrium
properties of the FSCL algorithm [GA95, GMA95]. We outline those results
below.

FSCL convergence

First, in order to establish FSCL convergence, we can model the FSCL
network as a Markov process with state

_ [ @ - yN(t)
D=1ty - Ful)

where f;(t) = ¢;(t)/t is the update frequency, c;(t) is the update count,
and y;(t) is the position of codevector ¢ at time ¢. The winning codevector
minimizes

F(ft)llyi(t) = x@)]|

where we consider fairness functions of the form
F(fi)=f!

with 3 a positive parameter. The counter ¢, (t) of the winner is incremented
and its position y,(t) updated as

Yult +1) = yu(t) + a(t)(x(t) = yu(t))

where x(t) is the input data vector at time ¢, and a(t) is the learning rate.
We then formulate the evolution of an ensemble of systems in terms of
the probability Q(c,¢’) of transition from state ¢ to state ¢’ and describe
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the evolution of the process through a linear time-dependent Fokker-Plank
equation.

With suitable approximations it can be shown that the mean and the
covariance matrix of the codevectors’ deviation from the equilibrium must
vanish as t — oo with necessary and sufficient conditions:

lim a(t) =0, and / a(t)dt = oo.

t—oo to

Once again we note that these conditions are, satisfyingly, the same as

those needed for CL and KSFM.

FSCL Equilibrium

In order to establish the equilibrium properties of the FSCL codebook
design technique, we simplify the analysis to one-dimensional input data
and a large number of codevectors. While we omit the details here, we
can then show that, for fairness functions of the form F(f;) = fz’-g, the
equilibrium codeword density is proportional to a power of the input data
pdf, i.e.,

36+1
(codevector density)  (data density) 30+3,

and FSCL minimizes the Lg-norm distortion measure with

2
36+ 1

These results show that the FSCL algorithm can be used to optimize a
larger class of distortion measures compared with previous VQ clustering
algorithms, at least for a one-dimensional input space. It should be noted
that, as far as we know, only one-dimensional equilibrium results have been
calculated for any ANN clustering algorithm.

q= € (0,2].

5 Adaptive Vector Quantization

Our ultimate objective, which we are now investigating, is to modify our
VQ encoder with a suitable adaptation mechanism such that an Adaptive
Vector Quantizer (AVQ) is realized. More precisely, we wish to realize an
encoder that codes a non-stationary source with unknown statistics at an
average of R bits per symbol, such that the average distortion per symbol
is minimal. Among the open questions we hope to answer are 1) what is
the optimal distortion that can be realized (by any coding), and 2) how
close can AVQ come?
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FIGURE 3. Block diagram of AVQ algorithms

To structure the discussion, assume a Large (possibly infinite) universal
codebook, C* C RF. ! We’ll assume that the AVQ encoding uses a local
codebook, C; C C* and that the AVQ encoding is time-variant:

Qi:R" = ¢
Xt =Qi(Xy) €C
This requires some local codebook selection mechanism:
5.:C* = {0,1}
such that C, ={y|s(y)=1,y€eC"}.

Now, assuming that C* is finite, let N = |C*| and S; = s,(y1)si(y2) -+ s:(¥yn),
wherey; € C*. Then S;, the codebook-selection process, is an integer-valued
random variable 0 < S; < 2V — 1,

A pictorial view of this model is shown below in Figure 3.

We have found it useful to classify all of extant AVQ encoders into two
classes of universal codebook encoders. We refer to these as:

e A priori codebooks in which:

— Both encoder and decoder have complete knowledge of C™, and

— we assumes we know enough about the source to set C* before
coding commences, or

! Please note that we have changed notation here. The codebook, C*, plays the
same role as that denoted Y previously. We adopt the use of C* to emphasize
that this is an adaptive codebook.
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FIGURE 4. Taxonomy of AV(Q algorithms

o Inductive codebooks in which:

— Encoder and decoder only know initial local codebook C}

— The rest of C* is induced from observing the source.

With this fundamental differentiation, we have established a taxonomy
of current AVQ encoders, as shown in Fig. 4. We are currently reviewing
the literature to determine if this taxonomy is sufficient for all previously
proposed AVQ techniques. We anticipate that this taxonomy will prove
useful for our subsequent efforts at implementing an AVQ system consistent
with our current DVQ algorithm.

6 Conclusions

In this paper, we have described our DVQ algorithm and presented a hard-
ware architecture implementing the algorithm. We have shown that the
codebook design technique we employ, FSCL, has attractive theoretical
properties, and appears to be suitable for use with non-stationary sources.
Finally, we have shown that previous AVQ investigations can be described
in a convenient mathematical framework, and classified according to a sim-
ple taxonomy.

Our ongoing work is concentrated on determining what AV(Q) mechanisms
are needed to approach optimal AVQ, and determining if these mechanisms
are computationally feasible in real-time, inexpensive hardware.
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